Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UiT research on mysterious music phenomenon

29.06.2006
Mari Kimura is an acclaimed Japanese violinist who has the rare ability of producing strange sounds with her instrument. She doesn’t know how this is possible, but a team of scientists at University of Tromsø are confident in finding an answer to the puzzle.

Mari Kimura is a New York based solo violinist that usually lectures at the acknowledged Juilliard School of Music. She is one of the extremely few people who can produce controlled subharmonic tones on violin. Kimura has developed this trait to a signature feature in her compositions and improvisations. The sounds she plays on violin are usually found in a cello.

"I have done this for ten years, and the researchers in US and Japan have tried to figure it out for as long. I don’t really know what it is I do, because I have an empirical approach to it. It all happens by the method of trial and error", says Kimura.

Solving the mystery

Scientists from Stanford, Columbia and Tokyo University are amongst those who found the phenomenon interesting. However they did not have the necessary combination of competence within physics, as well as interest in music, to be able to work exhaustingly on figuring out Kimura’s subharmonic violin pitch. In Tromsø however Kimura found the right kind of scientists that can measure and explain the phenomenon.

"We have definitely what it takes to solve this mystery. We have worked with strange and exotic sound systems earlier, and we have the ability to make good measurements, correct theoretical modelling and of course the necessary musical insight and interest", says the physics professor Alfred Hanssen.

Mutual advantage

The precise measurements of the Kimura’s low-pitched sounds were made at the echo free chamber at the University Hospital. By applying even pressure on the string by use of fine and steady movements of the bow Kimura can conjure many different tones from one place on the string. Measurements of these fascinating sounds will be used in research for years to come.

"Kimura makes a violin string vibrate in a totally new way. In physics we call this a driven and damped non-linear system, which we are particularly preoccupied with in our research. By understanding the way she plays the violin, we are contributing to understanding of similar processes in the nature", says Hanssen.

Mari Kimura too hopes to take advantage of the results that professor Hanssen and his assistants, PhD candidate Heidi Hindberg and post.doc Tor Arne Øigård achieve with their scientific approach.

"My ambition is to find out if there is more that I can do, if there is something to reach for. As an artist you are always searching for ways to expand the sound, to expand the use of violin as an instrument".

By: Maja Sojtaric

Professor Alfred Hanssen | alfa
Further information:
http://uit.no/nyheter/tromsoflaket/3092?From=0

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>