Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Spitzer Telescope reveals jets of matter around dead star

A team of scientists, including researchers in the University of Southampton’s School of Physics and Astronomy, have shown that black holes are not the only known objects in the universe to produce infrared light from beams of particles being shot into space at nearly the speed of light.

Previously, these steady ‘relativistic jets’ were only seen from black holes which form part of a black hole X-ray binary, a system containing a black hole orbited by a normal star which is so close that the black hole's gravity can peel off the outer part of the normal star and suck in its gas through an accretion disk or disk of matter.

A computer-generated visualisation of a black hole or neutron star X-ray binary system. Image produced using a visualisation tool provided by Rob Hynes of the Louisiana State University, USA.

Using the extremely sensitive infrared Spitzer Space Telescope recently launched by NASA, the team discovered one of these steady jets of matter coming from a neutron star (a super-dense type of dead star) in an X-ray binary system. For many years scientists have debated whether there was something unique to black holes that fuelled relativistic jets. It is now clear that the jets must be fuelled by something that both black holes and neutron stars share.

Neutron stars form in the death knells of massive stars, when the pressure at the centre of the star is so large that the electrons and protons of normal matter combine to form a star made almost entirely of neutrons. Not quite dense enough to be black holes, they have masses slightly larger than the Sun's, but diameters about the size of a city, making them as dense as the nuclei of atoms.

Dr Thomas Maccarone, of the University of Southampton, explains: ‘Jets of matter shot off by black holes are usually observed with a radio telescope which enables astronomers to isolate the jet from everything else in the system. However, observing a neutron star’s jets with a radio telescope would take many hours because the jets are very faint. The Spitzer Space Telescope sees light which is redder than the reddest colours visible by the human eye and also redder than the light given off by normal stars.’

Using the Spitzer Telescope, the researchers were therefore able to detect the faint jet of a particular neutron star, 4U 0614+091, in minutes even though it is located about 10,000 light-years away in the constellation Orion. This signal would have taken almost a day to detect on the most powerful radio telescopes on Earth. The Spitzer Telescope also helped the team infer details about the jet’s geometry. The team’s data indicates that the presence of an accretion disk and an intense gravitational field may be all that is needed to create and fuel a jet of matter.

Dr Maccarone continues: ‘For the past 25 years, astronomers have debated the importance of a black hole in jet production. By comparing the behaviour of the relativistic jets seen from neutron star X-ray binaries and from black hole X-ray binaries, astronomers have hoped to compare neutron stars and black holes directly and possibly to see whether these jets are extracting the black holes' rotational energy. This discovery blazes the trail for future studies which should help reveal the nature of relativistic jets.’

Sarah Watts | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>