Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why do we shake the saltcellar before sprinkling the salt?

27.06.2006
If our food is a bit dull, the reaction is automatic - we take the saltcellar and we shake salt onto it. We have learned this from a young age: you have to shake the saltcellar so that salt comes out. Why is this?

Salt, as with rice, cement, sand, are finely divided solids which we call granular media. They are groups of similar particles that can behave as a liquid, flowing through orifices; or as a solid, given that they can maintain a constant shape and volume (see Fig A, sand sculptures). This is why the behaviour of granular media is curious and, on many occasions, problematic.


Figures A, B, C and D

One of the intrinsic phenomena on handling granular media is the spontaneous formation of arches as shown in figure B. Arches are structures as used in architecture in order to construct bridges and aqueducts (figure C). These arches are referred to as being vaulted when formed in three dimensions and have the common feature that the particles forming them stabilize each other. That is, if one of the arcs making up the vaulted arch is eliminated, the whole structure will collapse.

When a granular medium flows through an orifice, the formation of the vaulting can cause a blockage. The flow of particles stops and the arch supports the weight of all the material on top of it, in the same way that the arches of a bridge support the weight of the vehicles crossing over it. The blockages in the flow of a granular medium cause serious problems in certain industrial processes. The plastics, cement and pharmaceutical industries are example of where granular media are the main players.

The blockages in discharging silos or dosifiers have physical properties in common with other kinds of hold-ups. Who has not been in a traffic jam, with the start of their holiday delayed? An example closer to home – and certainly more dangerous – is that of the bull running in the fiestas of San Fermín in Pamplona (figure D). When the street narrows and the runners run into each other, a spectacular accumulation of bodies occurs.

Over the past decade numerous scientists have been trying to understand the properties of obstructions of this nature, as well as the factors that are most influential in their formation. Nevertheless, there are many questions left unanswered. In this thesis Iker Zuriguel has investigated the simplest example of blockages that can be studied in the laboratory: a small silo full of spherical particles and with a circular orifice at its base. The thesis was presented at the University of Navarra.

Despite the apparent simplicity of the phenomenon, the unresolved questions are many. For example, what controls the phenomenon of blockages? The particle size? The size of the orifice? This thesis shows that the really important factor is the relationship between the radius of the orifice and that of the particle. Another important question: with the same size of particle and orifice, is it always the same number of grains that fall in an avalanche before the system blocks up? This research is a resounding proof that this is not so. For the same experimental conditions, we can find avalanches of 10 to 10,000 spheres!

The most important result of this thesis was the discovery that, in a 3-dimensional silo, when spherical particles are used, it suffices for the radius of the orifice to be five times greater than that of the particles in order that obstruction does not occur. And, as the saltcellar has holes less than this size, it is necessary to shake it in order to break up the arches formed and that impede the salt to free-flow on to our food.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=989

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>