Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why do we shake the saltcellar before sprinkling the salt?

27.06.2006
If our food is a bit dull, the reaction is automatic - we take the saltcellar and we shake salt onto it. We have learned this from a young age: you have to shake the saltcellar so that salt comes out. Why is this?

Salt, as with rice, cement, sand, are finely divided solids which we call granular media. They are groups of similar particles that can behave as a liquid, flowing through orifices; or as a solid, given that they can maintain a constant shape and volume (see Fig A, sand sculptures). This is why the behaviour of granular media is curious and, on many occasions, problematic.


Figures A, B, C and D

One of the intrinsic phenomena on handling granular media is the spontaneous formation of arches as shown in figure B. Arches are structures as used in architecture in order to construct bridges and aqueducts (figure C). These arches are referred to as being vaulted when formed in three dimensions and have the common feature that the particles forming them stabilize each other. That is, if one of the arcs making up the vaulted arch is eliminated, the whole structure will collapse.

When a granular medium flows through an orifice, the formation of the vaulting can cause a blockage. The flow of particles stops and the arch supports the weight of all the material on top of it, in the same way that the arches of a bridge support the weight of the vehicles crossing over it. The blockages in the flow of a granular medium cause serious problems in certain industrial processes. The plastics, cement and pharmaceutical industries are example of where granular media are the main players.

The blockages in discharging silos or dosifiers have physical properties in common with other kinds of hold-ups. Who has not been in a traffic jam, with the start of their holiday delayed? An example closer to home – and certainly more dangerous – is that of the bull running in the fiestas of San Fermín in Pamplona (figure D). When the street narrows and the runners run into each other, a spectacular accumulation of bodies occurs.

Over the past decade numerous scientists have been trying to understand the properties of obstructions of this nature, as well as the factors that are most influential in their formation. Nevertheless, there are many questions left unanswered. In this thesis Iker Zuriguel has investigated the simplest example of blockages that can be studied in the laboratory: a small silo full of spherical particles and with a circular orifice at its base. The thesis was presented at the University of Navarra.

Despite the apparent simplicity of the phenomenon, the unresolved questions are many. For example, what controls the phenomenon of blockages? The particle size? The size of the orifice? This thesis shows that the really important factor is the relationship between the radius of the orifice and that of the particle. Another important question: with the same size of particle and orifice, is it always the same number of grains that fall in an avalanche before the system blocks up? This research is a resounding proof that this is not so. For the same experimental conditions, we can find avalanches of 10 to 10,000 spheres!

The most important result of this thesis was the discovery that, in a 3-dimensional silo, when spherical particles are used, it suffices for the radius of the orifice to be five times greater than that of the particles in order that obstruction does not occur. And, as the saltcellar has holes less than this size, it is necessary to shake it in order to break up the arches formed and that impede the salt to free-flow on to our food.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=989

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>