Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find the reason behind black holes' light shows

23.06.2006
A team of astronomers led by the University of Michigan may know how black holes are lighting up the Universe. New data from NASA's Chandra X-ray Observatory show, for the first time, that powerful magnetic fields are the key to these brilliant and startling light shows.

It is estimated that up to half of the total radiation in the universe since the Big Bang comes from material falling towards super-massive black holes, including those powering quasars, the brightest known objects. For decades, scientists have struggled to understand how black holes, the darkest objects in the Universe, can generate such prodigious amounts of radiation.

New X-ray data from Chandra give the first clear explanation for what drives this process: magnetic fields. Chandra observed a black hole system in our galaxy, known as GRO J1655-40 (J1655, for short), where a black hole was pulling material from a companion star into a disk.

"By intergalactic standards, J1655 is in our backyard so we can use it as a scale model to understand how all black holes work, including the monsters found in quasars," said Jon Miller, assistant professor at U-M, whose paper on these results appears in this week's issue of the journal Nature.

If gas in a disk around a black hole loses energy, it will swirl toward the black hole, generating light along the way. Scientists have long thought that magnetic fields may drive this energy loss by generating friction in the gas and driving a wind from the disk that carries momentum outward, in an example of conservation of momentum.

By using Chandra spectra, that is, the amount of X-rays at different energies, Miller and his team showed that the speed and density of the wind from the disk in J1655 corresponded to computer simulation predictions for winds driven by magnetic fields. The spectral fingerprint also ruled out the two other major competing theories to magnetically-driven winds.

"In 1973, theorists came up with the idea that magnetic fields could drive the generation of light by black holes," said co-author John Raymond of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass. "Now, over 30 years later, we finally may have proof."

This deeper understanding of how black holes accrete matter also teaches astronomers about other properties of black holes, including how they grow.

"Just as a doctor wants to understand the causes of an illness and not merely the symptoms, astronomers try to understand what causes phenomena they see in the Universe," said co-author Danny Steeghs also of the CfA. "By understanding what makes material fall onto black holes and its energy released, we may also learn how it plunges onto other important objects."

In addition to accretion disks around black holes, magnetic fields may play an important role in disks detected around young Sun-like stars where planets are forming as well as ultra-dense objects called neutron stars.

Laura Bailey | EurekAlert!
Further information:
http://www.umich.edu

More articles from Physics and Astronomy:

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

nachricht Tracking a solar eruption through the solar system
16.08.2017 | American Geophysical Union

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>