Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three new 'Trojan' asteroids found sharing Neptune's orbit

19.06.2006
Three new objects locked into roughly the same orbit as Neptune--called "Trojan" asteroids--have been found by researchers from the Carnegie Institution's Department of Terrestrial Magnetism (DTM) and the Gemini Observatory in Hilo, Hawaii. The discovery offers evidence that Neptune, much like its big cousin Jupiter, hosts thick clouds of Trojans in its orbit, and that these asteroids probably share a common source. It also brings the total of known Neptune Trojans to four.

"It is exciting to have quadrupled the known population of Neptune Trojans," said Carnegie Hubble Fellow Scott Sheppard, lead author of the study, which appears in the June 15 online issue of Science Express. "In the process, we have learned a lot both about how these asteroids become locked into their stable orbits, as well as what they might be made of, which makes the discovery especially rewarding."


In this schematic of the outer solar system, "Trojan" asteroids can be seen sharing the orbits of Jupiter and Neptune. At either of two points 60 degrees away from each planet, the gravitational forces of the planet and the Sun combine to lock the asteroids into a stable, synchronized orbit. Three new Trojans have been found in the region ahead of Neptune, bringing the total to four; the discovery suggests that Neptune hosts clouds of Trojans that are more dense and populous than those in Jupiter's orbit. Credit: (Image courtesy Scott Sheppard)

The recently discovered Neptune Trojans are only the fourth stable group of asteroids observed around the Sun. The others are the Kuiper Belt just beyond Neptune, the Jupiter Trojans, and the main asteroid belt between Mars and Jupiter. Evidence suggests that the Neptune Trojans are more numerous than either the main asteroid belt or the Jupiter Trojans, but they are hard to observe because they are so far away from the Sun. Astronomers therefore require the largest telescopes in the world equipped with sensitive digital cameras to detect them.

Trojan asteroids cluster around one of two points that lead or trail the planet by about 60 degrees in its orbit, known as Lagrangian points. In these areas, the gravitational pull of the planet and the Sun combine to lock the asteroids into stable orbits synchronized with the planet. German Astronomer Max Wolf identified the first Jupiter Trojan in 1906, and since then, more than 1800 such asteroids have been identified marching along that planet's orbit. Because Trojan asteroids share a planet's orbit, they can help astronomers understand how planets form, and how the solar system evolved.

Researchers theorized that Trojans might also flank other planets, but evidence for this has surfaced only recently. In 2001, the first Neptune Trojan was spotted in the planet's leading Lagrangian point. In 2004, Sheppard and Chadwick Trujillo of the Gemini Observatory, who is also an author on the current study, found the second Neptune Trojan using Carnegie's Magellan-Baade 6.5 meter telescope in Las Campanas, Chile. They found two more in 2005, bringing the total to four, and observed them again using the 8.2 meter Gemini Telescope in Hawaii in order to accurately determine their orbits. All four of the known Neptune Trojans reside in the planet's leading Lagrangian point.

One of the new Trojans has an orbit that is more steeply tilted to the plane of the solar system than the other three. Although only this one has such a steep orbit, the methods used to observe the asteroids are not sensitive to objects so far out of tilt with the rest of the solar system. The very existence of this Trojan suggests that there are many more like it, and that Neptune's Trojans as a whole occupy thick clouds with complex, interlaced orbits.

"We were really surprised to find a Neptune Trojan with such a large orbital inclination," Trujillo said. "The discovery of the one tilted Neptune Trojan implies that there may be many more far from the solar system plane than near the plane, and that the Trojans are really a "cloud" or "swarm" of objects co-orbiting with Neptune."

A large population of high-inclination Neptune Trojans would rule out the possibility that they are left over from early in the solar system's history, since unaltered primordial asteroid groups should be closely aligned with the plane of the solar system. These clouds probably formed much like Jupiter's Trojan clouds did: once the giant planets settled into their paths around the Sun, any asteroid that happened to be in the Trojan region "froze" into its orbit.

Sheppard and Trujillo also compared, for the first time, the colors of all four known Neptune Trojans. They are all about the same shade of pale red, suggesting that they share a similar origin and history. Though it is hard to tell for sure with only four on the books, the researchers believe that the Neptune Trojans might share a common origin with the Jupiter Trojans and outer irregular satellites of the giant planets. These objects might be the last remnants of the countless small bodies that formed in the giant planet region, most of which eventually became part of the planets or were tossed out of the solar system.

Dr. Scott Sheppard | EurekAlert!
Further information:
http://www.carnegieinstitution.org

More articles from Physics and Astronomy:

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>