Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three new 'Trojan' asteroids found sharing Neptune's orbit

19.06.2006
Three new objects locked into roughly the same orbit as Neptune--called "Trojan" asteroids--have been found by researchers from the Carnegie Institution's Department of Terrestrial Magnetism (DTM) and the Gemini Observatory in Hilo, Hawaii. The discovery offers evidence that Neptune, much like its big cousin Jupiter, hosts thick clouds of Trojans in its orbit, and that these asteroids probably share a common source. It also brings the total of known Neptune Trojans to four.

"It is exciting to have quadrupled the known population of Neptune Trojans," said Carnegie Hubble Fellow Scott Sheppard, lead author of the study, which appears in the June 15 online issue of Science Express. "In the process, we have learned a lot both about how these asteroids become locked into their stable orbits, as well as what they might be made of, which makes the discovery especially rewarding."


In this schematic of the outer solar system, "Trojan" asteroids can be seen sharing the orbits of Jupiter and Neptune. At either of two points 60 degrees away from each planet, the gravitational forces of the planet and the Sun combine to lock the asteroids into a stable, synchronized orbit. Three new Trojans have been found in the region ahead of Neptune, bringing the total to four; the discovery suggests that Neptune hosts clouds of Trojans that are more dense and populous than those in Jupiter's orbit. Credit: (Image courtesy Scott Sheppard)

The recently discovered Neptune Trojans are only the fourth stable group of asteroids observed around the Sun. The others are the Kuiper Belt just beyond Neptune, the Jupiter Trojans, and the main asteroid belt between Mars and Jupiter. Evidence suggests that the Neptune Trojans are more numerous than either the main asteroid belt or the Jupiter Trojans, but they are hard to observe because they are so far away from the Sun. Astronomers therefore require the largest telescopes in the world equipped with sensitive digital cameras to detect them.

Trojan asteroids cluster around one of two points that lead or trail the planet by about 60 degrees in its orbit, known as Lagrangian points. In these areas, the gravitational pull of the planet and the Sun combine to lock the asteroids into stable orbits synchronized with the planet. German Astronomer Max Wolf identified the first Jupiter Trojan in 1906, and since then, more than 1800 such asteroids have been identified marching along that planet's orbit. Because Trojan asteroids share a planet's orbit, they can help astronomers understand how planets form, and how the solar system evolved.

Researchers theorized that Trojans might also flank other planets, but evidence for this has surfaced only recently. In 2001, the first Neptune Trojan was spotted in the planet's leading Lagrangian point. In 2004, Sheppard and Chadwick Trujillo of the Gemini Observatory, who is also an author on the current study, found the second Neptune Trojan using Carnegie's Magellan-Baade 6.5 meter telescope in Las Campanas, Chile. They found two more in 2005, bringing the total to four, and observed them again using the 8.2 meter Gemini Telescope in Hawaii in order to accurately determine their orbits. All four of the known Neptune Trojans reside in the planet's leading Lagrangian point.

One of the new Trojans has an orbit that is more steeply tilted to the plane of the solar system than the other three. Although only this one has such a steep orbit, the methods used to observe the asteroids are not sensitive to objects so far out of tilt with the rest of the solar system. The very existence of this Trojan suggests that there are many more like it, and that Neptune's Trojans as a whole occupy thick clouds with complex, interlaced orbits.

"We were really surprised to find a Neptune Trojan with such a large orbital inclination," Trujillo said. "The discovery of the one tilted Neptune Trojan implies that there may be many more far from the solar system plane than near the plane, and that the Trojans are really a "cloud" or "swarm" of objects co-orbiting with Neptune."

A large population of high-inclination Neptune Trojans would rule out the possibility that they are left over from early in the solar system's history, since unaltered primordial asteroid groups should be closely aligned with the plane of the solar system. These clouds probably formed much like Jupiter's Trojan clouds did: once the giant planets settled into their paths around the Sun, any asteroid that happened to be in the Trojan region "froze" into its orbit.

Sheppard and Trujillo also compared, for the first time, the colors of all four known Neptune Trojans. They are all about the same shade of pale red, suggesting that they share a similar origin and history. Though it is hard to tell for sure with only four on the books, the researchers believe that the Neptune Trojans might share a common origin with the Jupiter Trojans and outer irregular satellites of the giant planets. These objects might be the last remnants of the countless small bodies that formed in the giant planet region, most of which eventually became part of the planets or were tossed out of the solar system.

Dr. Scott Sheppard | EurekAlert!
Further information:
http://www.carnegieinstitution.org

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

New High-Performance Center Translational Medical Engineering

26.04.2017 | Health and Medicine

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>