Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three new 'Trojan' asteroids found sharing Neptune's orbit

19.06.2006
Three new objects locked into roughly the same orbit as Neptune--called "Trojan" asteroids--have been found by researchers from the Carnegie Institution's Department of Terrestrial Magnetism (DTM) and the Gemini Observatory in Hilo, Hawaii. The discovery offers evidence that Neptune, much like its big cousin Jupiter, hosts thick clouds of Trojans in its orbit, and that these asteroids probably share a common source. It also brings the total of known Neptune Trojans to four.

"It is exciting to have quadrupled the known population of Neptune Trojans," said Carnegie Hubble Fellow Scott Sheppard, lead author of the study, which appears in the June 15 online issue of Science Express. "In the process, we have learned a lot both about how these asteroids become locked into their stable orbits, as well as what they might be made of, which makes the discovery especially rewarding."


In this schematic of the outer solar system, "Trojan" asteroids can be seen sharing the orbits of Jupiter and Neptune. At either of two points 60 degrees away from each planet, the gravitational forces of the planet and the Sun combine to lock the asteroids into a stable, synchronized orbit. Three new Trojans have been found in the region ahead of Neptune, bringing the total to four; the discovery suggests that Neptune hosts clouds of Trojans that are more dense and populous than those in Jupiter's orbit. Credit: (Image courtesy Scott Sheppard)

The recently discovered Neptune Trojans are only the fourth stable group of asteroids observed around the Sun. The others are the Kuiper Belt just beyond Neptune, the Jupiter Trojans, and the main asteroid belt between Mars and Jupiter. Evidence suggests that the Neptune Trojans are more numerous than either the main asteroid belt or the Jupiter Trojans, but they are hard to observe because they are so far away from the Sun. Astronomers therefore require the largest telescopes in the world equipped with sensitive digital cameras to detect them.

Trojan asteroids cluster around one of two points that lead or trail the planet by about 60 degrees in its orbit, known as Lagrangian points. In these areas, the gravitational pull of the planet and the Sun combine to lock the asteroids into stable orbits synchronized with the planet. German Astronomer Max Wolf identified the first Jupiter Trojan in 1906, and since then, more than 1800 such asteroids have been identified marching along that planet's orbit. Because Trojan asteroids share a planet's orbit, they can help astronomers understand how planets form, and how the solar system evolved.

Researchers theorized that Trojans might also flank other planets, but evidence for this has surfaced only recently. In 2001, the first Neptune Trojan was spotted in the planet's leading Lagrangian point. In 2004, Sheppard and Chadwick Trujillo of the Gemini Observatory, who is also an author on the current study, found the second Neptune Trojan using Carnegie's Magellan-Baade 6.5 meter telescope in Las Campanas, Chile. They found two more in 2005, bringing the total to four, and observed them again using the 8.2 meter Gemini Telescope in Hawaii in order to accurately determine their orbits. All four of the known Neptune Trojans reside in the planet's leading Lagrangian point.

One of the new Trojans has an orbit that is more steeply tilted to the plane of the solar system than the other three. Although only this one has such a steep orbit, the methods used to observe the asteroids are not sensitive to objects so far out of tilt with the rest of the solar system. The very existence of this Trojan suggests that there are many more like it, and that Neptune's Trojans as a whole occupy thick clouds with complex, interlaced orbits.

"We were really surprised to find a Neptune Trojan with such a large orbital inclination," Trujillo said. "The discovery of the one tilted Neptune Trojan implies that there may be many more far from the solar system plane than near the plane, and that the Trojans are really a "cloud" or "swarm" of objects co-orbiting with Neptune."

A large population of high-inclination Neptune Trojans would rule out the possibility that they are left over from early in the solar system's history, since unaltered primordial asteroid groups should be closely aligned with the plane of the solar system. These clouds probably formed much like Jupiter's Trojan clouds did: once the giant planets settled into their paths around the Sun, any asteroid that happened to be in the Trojan region "froze" into its orbit.

Sheppard and Trujillo also compared, for the first time, the colors of all four known Neptune Trojans. They are all about the same shade of pale red, suggesting that they share a similar origin and history. Though it is hard to tell for sure with only four on the books, the researchers believe that the Neptune Trojans might share a common origin with the Jupiter Trojans and outer irregular satellites of the giant planets. These objects might be the last remnants of the countless small bodies that formed in the giant planet region, most of which eventually became part of the planets or were tossed out of the solar system.

Dr. Scott Sheppard | EurekAlert!
Further information:
http://www.carnegieinstitution.org

More articles from Physics and Astronomy:

nachricht Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials
17.01.2018 | Universität des Saarlandes

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>