Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Camp Energy – Survival of the physicists

07.06.2006


How much carbon dioxide is produced from the energy you use in a week and how does this contribute to the problems of global warming and climate change? How can physics help? How many students can you fit into a tent?



This month at the Cheltenham Science Festival, Camp Energy – Survival of the Physicists will answer these questions. Four physics students have been challenged by the Institute of Physics to camp out at the festival from 7 to 11 June and live as carbon neutrally as they can. They will use their knowledge of physics to generate energy that produces as little carbon dioxide as possible.

Anthea Cain, one of the students taking part in the camp said “We’re hoping that, unlike Big Brother, our camp won’t have any walk outs or evictions! However, like the fourteen contestants in the house, we will be living in a closed environment and facing daily challenges set for us by our own Big Brother, the Institute of Physics.”


The challenges are designed to show how physics can help to reduce the amount of carbon dioxide released in basic everyday activities. The tasks will cover the key areas of food, travel, entertainment and wellbeing, as follows:

- Day 1: building and using a solar cooker
- Day 2: making bio-diesel from chip fat
- Day 3: making a crystal radio and being entertained by a bicycle-powered sound system
- Day 4: building a hot tub using an old bath, radiator and coppiced charcoal

Festival visitors also have the chance to make a difference themselves at Camp Energy by signing pledge cards to promise changes in behaviour to reduce emissions. For example people can promise to not leave electric appliances on stand-by or switch to a renewable energy source for their electricity supply.

If the students can survive life at Camp Energy – and each other! – they will get to spend the final afternoon with the BBC’s Quentin Cooper (presenter of Radio 4’s science programme, Material World) at a panel discussion of the week’s activities answering audience questions about how to reduce carbon dioxide emissions without going to the same lengths.

Caitlin Watson, project manager at the Institute of Physics, said: “Where we get our energy from is currently a very hot topic but how many of us know how to make a difference? With Camp Energy, we are going to an extreme in order to highlight that physics is part of the solution in both reducing demand and developing alternative supplies.”

Dr Wendy Buckley, a physicist at Carbon Footprint, the company who helped develop the pledge cards said “The average amount of carbon dioxide produced by four people over the course of a week is 770kg, enough to fill 1.8 million balloons. The students are aiming to reduce that as much as possible and show that physics can affect all our lives in a very real and important way.”

Helen MacBain | alfa
Further information:
http://www.physics.org

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>