Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Trio of Neptunes and their Belt


HARPS Instrument Finds Unusual Planetary System

Planetary System Around HD 69830 (Artist’s Impression) The HARPS measurement reveal the presence of three planets with masses between 10 and 18 Earth masses around HD 69830, a rather normal star slightly less massive than the Sun. The planets’ mean distance are 0.08, 0.19, and 0.63 the mean distance between the Earth and the Sun. From previous observations, it seems that there exists also an asteroid belt, whose location is unknown. It could either lie between the two outermost planets, or farther from its parent star than 0.8 the mean Earth-Sun distance.

Using the ultra-precise HARPS spectrograph on ESO’s 3.6-m telescope at La Silla (Chile), a team of European astronomers have discovered that a nearby star is host to three Neptune-mass planets. The innermost planet is most probably rocky, while the outermost is the first known Neptune-mass planet to reside in the habitable zone. This unique system is likely further enriched by an asteroid belt.

“For the first time, we have discovered a planetary system composed of several Neptune-mass planets”, said Christophe Lovis, from the Geneva Observatory and lead-author of the paper presenting the results (1).

During more than two years, the astronomers carefully studied HD 69830, a rather inconspicuous nearby star slightly less massive than the Sun. Located 41 light-years away towards the constellation of Puppis (the Stern), it is, with a visual magnitude of 5.95, just visible with the unaided eye. The astronomers’ precise radial-velocity measurements (2) allowed them to discover the presence of three tiny companions orbiting their parent star in 8.67, 31.6 and 197 days.

“Only ESO’s HARPS instrument installed at the La Silla Observatory, Chile, made it possible to uncover these planets”, said Michel Mayor, also from Geneva Observatory, and HARPS Principal Investigator. “Without any doubt, it is presently the world’s most precise planet-hunting machine” (3).

The detected velocity variations are between 2 and 3 metres per second, corresponding to about 9 km/h! That’s the speed of a person walking briskly. Such tiny signals could not have been distinguished from ‘simple noise’ by most of today’s available spectrographs.

The newly found planets have minimum masses between 10 and 18 times the mass of the Earth. Extensive theoretical simulations favour an essentially rocky composition for the inner planet, and a rocky/gas structure for the middle one. The outer planet has probably accreted some ice during its formation, and is likely to be made of a rocky/icy core surrounded by a quite massive envelope. Further calculations have also shown that the system is in a dynamically stable configuration.

The outer planet also appears to be located near the inner edge of the habitable zone, where liquid water can exist at the surface of rocky/icy bodies. Although this planet is probably not Earth-like due to its heavy mass, its discovery opens the way to exciting perspectives.

With three roughly equal-mass planets, one being in the habitable zone, and an asteroid belt, this planetary system shares many properties with our own solar system.

“This alone makes this system already exceptional”, said Willy Benz, from Bern University, and co-author. “But the recent discovery by the Spitzer Space Telescope that the star most likely hosts an asteroid belt is adding the cherry to the cake.”

“The planetary system around HD 69830 clearly represents a Rosetta stone in our understanding of how planets form”, said Michel Mayor. “No doubt it will help us better understand the huge diversity we have observed since the first extra-solar planet was found 11 years ago.”


(1) These results appear in the 18 May issue of the research journal Nature (“Discovery of an extrasolar planetary system with three Neptune-Mass Planets”, by C. Lovis et al.). The team is composed of Christophe Lovis, Michel Mayor, Francesco Pepe, Didier Queloz, and Stéphane Udry (Observatoire de l’Université de Genève, Switzerland), Nuno C. Santos (Observatoire de l’Université de Genève, Switzerland, Centro de Astronomia e Astrofisica da Universidade de Lisboa and Centro de Geofisica de Evora, Portugal), Yann Alibert, Willy Benz, Christoph Mordasini (Physikalisches Institut der Universität Bern, Switzerland), François Bouchy (Observatoire de Haute-Provence and IAP, France), Alexandre C. M. Correia (Universidade de Aveiro, Portugal), Jacques Laskar (IMCCE-CNRS, Paris, France), Jean-Loup Bertaux (Service d’Aéronomie du CNRS, France), and Jean-Pierre Sivan (Laboratoire d’Astrophysique de Marseille, France).

(2) A planet in orbit around a star will manifest its presence by pulling the star in different directions, thereby changing by rather small amounts its measured velocity. Astronomers therefore measure with very high precision the velocity of a star to detect the signature of one or more planets.

(3) The High Accuracy Radial velocity Planet Searcher (HARPS) at the ESO La Silla 3.6-m telescope is dedicated to the discovery of extrasolar planets. It is a fibre-fed high-resolution echelle spectrograph that has demonstrated a long-term precision of about 1 m/s

Henri Boffin | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>