Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble provides spectacular view of ongoing comet breakup

28.04.2006


The NASA/ESA Hubble Space Telescope is providing astronomers with extraordinary views of comet 73P/Schwassmann-Wachmann 3 as it disintegrates before our eyes. Recent Hubble images have uncovered many more fragments than have been reported by ground-based observers. These observations provide an unprecedented opportunity to study the demise of a comet nucleus.


Hubble Space Telescope is providing astronomers with extraordinary views of Comet 73P/Schwassmann-Wachmann 3. The fragile comet is rapidly disintegrating as it approaches the Sun. Hubble images have uncovered many more fragments than have been reported by ground-based observers. These observations provide an unprecedented opportunity to study the demise of a comet nucleus. The comet is currently a chain of over 33 separate fragments, named alphabetically, stretching across the sky by several times the angular diameter of the Moon. Hubble caught fragment B during three days shortly after large outbursts in activity (from top to bottom: 18 April, 19 April and 20 April). Hubble shows several dozen "mini-comets” trailing behind each main fragment, probably associated with the ejection of house-sized chunks of surface material. Deep-freeze relics of the early Solar System, cometary nuclei are porous and fragile mixes of dust and ices that can break apart due to the thermal, gravitational, and dynamical stresses of approaching the Sun. Whether any of the many fragments survive the trip around the Sun remains to be seen in the weeks ahead. Credit: NASA, ESA, H. Weaver (APL/JHU), M. Mutchler and Z. Levay (STScI)



Amateur and professional astronomers around the world have been tracking the spectacular disintegration of 73P/Schwassmann-Wachmann 3 for years. As it plummets towards a close encounter with the Sun, swinging round the Sun on 7 June and heading away to begin another loop round the Solar System, the comet will pass the Earth on 12 May, at a distance of 11.7 million kilometres, or 30 times the distance between Earth and the Moon.

The comet currently comprises a chain of over 33 separate fragments, named alphabetically, and stretching across several degrees on the sky (the Sun and Moon each have an apparent diameter of about 1/2 a degree). Ground-based observers have noted dramatic brightening events associated with some of the fragments indicating that they are continuing to break up and that some may disappear altogether.


Hubble caught two of the fragments, B and G, shortly after major outbursts in activity. The resulting images reveal that an amazing process of hierarchical destruction is taking place, in which the larger fragments are continuing to break up into smaller chunks. Several dozen "mini-fragments" are to be found trailing behind each main fragment, probably associated with the ejection of house-sized chunks of surface material that can only be detected in these very high-resolution Hubble images.

Sequential Hubble images of the B fragment, taken a few days apart, suggest that the chunks are pushed down the tail by outgassing from the icy, sunward-facing surfaces of the chunks, much like space-walking astronauts are propelled by their jetpacks. The smaller chunks have the lowest mass, and so are accelerated away from the parent nucleus faster than the larger chunks. Some of the chunks seem to dissipate completely over the course of several days.

One of the European team members, Philippe Lamy from Laboratoire d’Astrophysique de Marseille, France, says “When we observed the comet in late 2001 we concluded that many small, by then invisible, fragments had to be created by fragmentation to account for the missing mass. The new Hubble observations beautifully confirm and illustrate our past findings.”

Cometary nuclei are deep-frozen relics of the early Solar System, consisting of porous and fragile mixes of dust and ices. They can be broken up by many different mechanisms: be ripped apart by gravitational tidal forces when they pass near large bodies (for example, Comet Shoemaker-Levy 9 was torn to pieces when it skirted near Jupiter in 1992, before plunging into Jupiter’s atmosphere a year later), fly apart as the nucleus rotates rapidly, crumble under thermal stresses as they pass near the Sun, or pop apart explosively like corks from champagne bottles as trapped volatile gases burst out.

"Catastrophic breakups may be the ultimate fate of most comets," says planetary astronomer Hal Weaver of the Johns Hopkins University Applied Physics Laboratory, who led the international team that made the recent Hubble observations and who used Hubble previously to study the fragmentations of comets Shoemaker-Levy 9 in 1993-1994, Hyakutake in 1996, and 1999 S4 (LINEAR) in 2000. Analysis of the new Hubble data, and data taken by other observatories as the comet approaches the Earth and Sun, may reveal which of these breakup mechanisms are contributing to the disintegration of 73P/Schwassmann-Wachmann 3.

German astronomers Arnold Schwassmann and Arno Arthur Wachmann discovered this comet during a photographic search for asteroids in 1930, when the comet passed within 9.3 million kilometres of the Earth (only 24 times the Earth-Moon distance). The comet orbits the Sun every 5.4 years, but it was not seen again until 1979. The comet was missed again in 1985 but has been observed at every return since then.

During the autumn of 1995, the comet had a huge outburst in activity and shortly afterwards four separate nuclei were identified and labelled "A", "B", "C", and "D", with "C" being the largest and the presumed principal remnant of the original nucleus. Only the C and B fragments were definitively observed during the next return, possibly because of the poor geometry of the 2000-2001 apparition. The much better observing circumstances during this year’s return may be partly responsible for the detection of so many new fragments, but it is also likely that the disintegration of the comet is now accelerating. Whether any of the many fragments will survive the trip around the Sun remains to be seen.

Lars Christensen | alfa
Further information:
http://www.spacetelescope.org/news/html/heic0605.html

More articles from Physics and Astronomy:

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

nachricht Experts explain origins of topographic relief on Earth, Mars and Titan
22.05.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>