Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble provides spectacular view of ongoing comet breakup

28.04.2006


The NASA/ESA Hubble Space Telescope is providing astronomers with extraordinary views of comet 73P/Schwassmann-Wachmann 3 as it disintegrates before our eyes. Recent Hubble images have uncovered many more fragments than have been reported by ground-based observers. These observations provide an unprecedented opportunity to study the demise of a comet nucleus.


Hubble Space Telescope is providing astronomers with extraordinary views of Comet 73P/Schwassmann-Wachmann 3. The fragile comet is rapidly disintegrating as it approaches the Sun. Hubble images have uncovered many more fragments than have been reported by ground-based observers. These observations provide an unprecedented opportunity to study the demise of a comet nucleus. The comet is currently a chain of over 33 separate fragments, named alphabetically, stretching across the sky by several times the angular diameter of the Moon. Hubble caught fragment B during three days shortly after large outbursts in activity (from top to bottom: 18 April, 19 April and 20 April). Hubble shows several dozen "mini-comets” trailing behind each main fragment, probably associated with the ejection of house-sized chunks of surface material. Deep-freeze relics of the early Solar System, cometary nuclei are porous and fragile mixes of dust and ices that can break apart due to the thermal, gravitational, and dynamical stresses of approaching the Sun. Whether any of the many fragments survive the trip around the Sun remains to be seen in the weeks ahead. Credit: NASA, ESA, H. Weaver (APL/JHU), M. Mutchler and Z. Levay (STScI)



Amateur and professional astronomers around the world have been tracking the spectacular disintegration of 73P/Schwassmann-Wachmann 3 for years. As it plummets towards a close encounter with the Sun, swinging round the Sun on 7 June and heading away to begin another loop round the Solar System, the comet will pass the Earth on 12 May, at a distance of 11.7 million kilometres, or 30 times the distance between Earth and the Moon.

The comet currently comprises a chain of over 33 separate fragments, named alphabetically, and stretching across several degrees on the sky (the Sun and Moon each have an apparent diameter of about 1/2 a degree). Ground-based observers have noted dramatic brightening events associated with some of the fragments indicating that they are continuing to break up and that some may disappear altogether.


Hubble caught two of the fragments, B and G, shortly after major outbursts in activity. The resulting images reveal that an amazing process of hierarchical destruction is taking place, in which the larger fragments are continuing to break up into smaller chunks. Several dozen "mini-fragments" are to be found trailing behind each main fragment, probably associated with the ejection of house-sized chunks of surface material that can only be detected in these very high-resolution Hubble images.

Sequential Hubble images of the B fragment, taken a few days apart, suggest that the chunks are pushed down the tail by outgassing from the icy, sunward-facing surfaces of the chunks, much like space-walking astronauts are propelled by their jetpacks. The smaller chunks have the lowest mass, and so are accelerated away from the parent nucleus faster than the larger chunks. Some of the chunks seem to dissipate completely over the course of several days.

One of the European team members, Philippe Lamy from Laboratoire d’Astrophysique de Marseille, France, says “When we observed the comet in late 2001 we concluded that many small, by then invisible, fragments had to be created by fragmentation to account for the missing mass. The new Hubble observations beautifully confirm and illustrate our past findings.”

Cometary nuclei are deep-frozen relics of the early Solar System, consisting of porous and fragile mixes of dust and ices. They can be broken up by many different mechanisms: be ripped apart by gravitational tidal forces when they pass near large bodies (for example, Comet Shoemaker-Levy 9 was torn to pieces when it skirted near Jupiter in 1992, before plunging into Jupiter’s atmosphere a year later), fly apart as the nucleus rotates rapidly, crumble under thermal stresses as they pass near the Sun, or pop apart explosively like corks from champagne bottles as trapped volatile gases burst out.

"Catastrophic breakups may be the ultimate fate of most comets," says planetary astronomer Hal Weaver of the Johns Hopkins University Applied Physics Laboratory, who led the international team that made the recent Hubble observations and who used Hubble previously to study the fragmentations of comets Shoemaker-Levy 9 in 1993-1994, Hyakutake in 1996, and 1999 S4 (LINEAR) in 2000. Analysis of the new Hubble data, and data taken by other observatories as the comet approaches the Earth and Sun, may reveal which of these breakup mechanisms are contributing to the disintegration of 73P/Schwassmann-Wachmann 3.

German astronomers Arnold Schwassmann and Arno Arthur Wachmann discovered this comet during a photographic search for asteroids in 1930, when the comet passed within 9.3 million kilometres of the Earth (only 24 times the Earth-Moon distance). The comet orbits the Sun every 5.4 years, but it was not seen again until 1979. The comet was missed again in 1985 but has been observed at every return since then.

During the autumn of 1995, the comet had a huge outburst in activity and shortly afterwards four separate nuclei were identified and labelled "A", "B", "C", and "D", with "C" being the largest and the presumed principal remnant of the original nucleus. Only the C and B fragments were definitively observed during the next return, possibly because of the poor geometry of the 2000-2001 apparition. The much better observing circumstances during this year’s return may be partly responsible for the detection of so many new fragments, but it is also likely that the disintegration of the comet is now accelerating. Whether any of the many fragments will survive the trip around the Sun remains to be seen.

Lars Christensen | alfa
Further information:
http://www.spacetelescope.org/news/html/heic0605.html

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>