Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mini satellites rocketing to space station

26.04.2006


A Russian rocket launched Monday, April 24, is carrying the first of three small, spherical satellites developed at MIT to the International Space Station -- a major step toward building space-based robotic telescopes and other systems.



The MIT SPHERES project -- the acronym stands for Synchronized Position Hold Engage Re-orient Experimental Satellites -- involves satellites about the size of volleyballs that are designed to float weightless in space while maintaining a precise position. A gang of such instruments, floating free in space, could serve as parts of a massive telescope looking for planets near other stars.

Launched from the Baikonur facility in Kazakhstan, the rocket with the satellites is expected to dock with the station today, April 26.


The first critical test of the SPHERE is set for Thursday, May 18 -- inside the space station. Two additional SPHERES are scheduled to reach the space station, carried up by the U.S. space shuttle, before the end of the year.

"We’re doing this because these missions have a lot of new, untried technology," said David W. Miller, an associate professor in MIT’s Department of Aeronautics and Astronautics. "Testing inside the space station will allow us to mature these technologies in a less risky micro-gravity environment," meaning inside the warm, air-filled station, rather than outside in the hazardous conditions of space.

Eventually, such autonomous space vehicles will fly on their own -- in formation in orbit -- and maintain their positions via radio links, interacting almost constantly to stay where they belong in relation to each other. Like a huge multiple-mirror telescope, each element will be "tweaked" frequently to keep the overall instrument "in tune."

The SPHERES were originally prototyped by undergraduate students at MIT. Subsequently, the flight SPHERES were built by MIT graduate students and Payload Systems Inc. of Cambridge, Mass., but launch was delayed for years by loss of the shuttle Columbia, and by a very crowded launch schedule. In the meantime, all the original students on the project have graduated, all but one have left MIT, and the technology has been steadily refined.

Two astronauts -- one from NASA, the other from the European Space Agency -- have already been trained to run the first experiments with SPHERES adrift inside the space station. According to Miller, an ultrasound system -- rather than a radio-based system -- was also installed inside the space station, so the SPHERES floating untethered have something to tell them where they are as they’re being tested in micro-gravity. The goal is to have them hover in space, not drifting "off station" by more than 1 centimeter.

"Our first test session, with astronauts getting it out to fly, will be May 18. That will be a check-up for the SPHERE," Miller said. Then "there will be some single-sphere maneuvers, such as rudimentary docking, inside the space station," where it should perform "with the same kind of resolution that the space radio system will have."

Earlier flight tests, involving some of the MIT students who helped develop the experimental SPHERES, were conducted aboard the "vomit comet," a KC-135 tanker plane that NASA uses to give astronauts their first experience with weightlessness. Now only one of the original students works at MIT: Alvar Saenz-Otero, a postdoctoral associate in aeronautics and astronautics, is managing the project.

Graduate students currently working on the project are Simon Nolet, Mark Hilstad, Swati Mohan, Nick Hoff and Georges Aoude. Miller and Professor Jonathan How are the participating faculty.

Scientists envision using SPHERES’ mechanical offspring as talented robots that can come together to work on construction projects, repair damage, refuel other satellites or work as parts of other systems -- including telescopes of unprecedented size.

These first SPHERES serve as prototypes for bigger instrument packages that will be spread out in space to work together.

Miller, who is also director of MIT’s Space Systems Laboratory, said the two other identical test SPHERES will be carried up to the space station on Saturday, July 1, the other on Thursday, Dec. 14, if shuttle launches occur as planned. One goal is to refine and test the technology for use with the bigger, more complex spheres yet to come.

Before the SPHERES finally got off the ground this week, the project encountered several delays. "They were ready to go in 2003," Miller said, but then the Space Shuttle Columbia disintegrated in the blazing heat of re-entry, killing the astronauts on board and setting the U.S. space program back by years. Of course, there’s no guarantee that all of the SPHERES will get aloft now, Miller said. There is huge demand for cargo space, especially aboard the shuttles, but launch delays because of technical problems, or simply the weather, are common.

This work is funded by DARPA, with additional support from NASA’s Goddard Space Flight Center, NASA’s Ames Research Center and NASA’s Jet Propulsion Laboratory.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>