Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cornell study finds that galaxies cluster near dark matter


Courtesy Volker Springel and the Millennium Simulation group - A computer simulation of the distribution of "dark" matter at an early point in the history of the universe. The observations by Cornell’s Duncan Farrah and colleagues provide solid evidence that galaxies in the distant past trace this matter distribution very well and that these galaxies will eventually reside in extremely rich clusters of galaxies at the current epoch.

Try mixing caramel into vanilla ice cream -- you will always end up with globs and swirls of caramel. Scientists are finding that galaxies may distribute themselves in similar ways throughout the universe and in places where there is lots of so-called dark matter.

"Our findings suggest that unseen dark matter -- which emits no light but has mass -- has had a major effect on the formation and evolution of galaxies, and that bright active galaxies are only born within dark matter clumps of a certain size in the young universe," said Cornell University research associate Duncan Farrah, the lead author of a paper on spatial clustering that appeared in the April 10 issue of Astrophysical Journal Letters.

To investigate the spatial distribution of galaxies, Farrah used data that recently became available from the Spitzer Wide-area InfraRed Extragalactic (SWIRE) survey, one of the largest such surveys performed by the Spitzer Space Telescope, which was launched in 2003.

A galaxy is typically made up of hundreds of billions of stars grouped tightly together. But galaxies themselves often group together into what astronomers call "large-scale structures." And, just as galaxies themselves can take on such shapes as ellipticals and spirals, so, too, can the large-scale structures, ranging from galaxy clusters to long filaments of galaxies to large, empty voids.

"You might think that galaxies are just distributed randomly across the sky, like throwing a handful of sand onto the floor," said Farrar. "But the problem is they are not, and this has been a great puzzle."

Farrah is interested in how large-scale structures form. To measure the amount of clustering in the early universe, he looked at light that had traveled for several billion years from extremely distant galaxies. From this he was able to calculate the amount of bunching in candidate galaxy clusters in the early universe.

"We wanted to find the beacons of the first stages of the formation of a galaxy cluster because, at that time, the clusters themselves had not formed yet," said Farrah.

In particular, he was interested in objects that emit strongly in the infrared and are surrounded by dense gas and dust. These objects, known as ultraluminous infrared galaxies (ULIRGs), were thought to be precursors of galaxy clusters. Farrah confirmed this by showing that ULIRGs do, indeed, tend to cluster in their early phases. The ability to pinpoint the locations of nascent galaxy clusters will enable researchers to investigate early cluster formations and when they occurred.

Farrah’s finding that distant ULIRGs are linked with large clumps of dark matter was surprising for another reason. As its name suggests, dark matter doesn’t emit light so no conventional telescope can see it. However, because dark matter has mass, its existence can be inferred by the way stars are drawn to regions where this mysterious mass is concentrated.

Unexpectedly, Farrah found that ULIRGs at different points in the history of the universe coincide with clumps of dark matter haloes of very similar masses. This observation suggests that a minimum amount of dark matter is necessary for galaxies to form and to coalesce into clusters. Farrah believes his study also provides valuable insights into understanding how dark matter helped mold the evolution of the universe.

Carol Lonsdale of NASA’s Jet Propulsion Laboratory, which manages the Spitzer Space Telescope, is the principal investigator for the SWIRE project.

Graduate student Alex Kwan is a Cornell News Service writer intern.

Press Relations Office | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>