Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cornell study finds that galaxies cluster near dark matter


Courtesy Volker Springel and the Millennium Simulation group - A computer simulation of the distribution of "dark" matter at an early point in the history of the universe. The observations by Cornell’s Duncan Farrah and colleagues provide solid evidence that galaxies in the distant past trace this matter distribution very well and that these galaxies will eventually reside in extremely rich clusters of galaxies at the current epoch.

Try mixing caramel into vanilla ice cream -- you will always end up with globs and swirls of caramel. Scientists are finding that galaxies may distribute themselves in similar ways throughout the universe and in places where there is lots of so-called dark matter.

"Our findings suggest that unseen dark matter -- which emits no light but has mass -- has had a major effect on the formation and evolution of galaxies, and that bright active galaxies are only born within dark matter clumps of a certain size in the young universe," said Cornell University research associate Duncan Farrah, the lead author of a paper on spatial clustering that appeared in the April 10 issue of Astrophysical Journal Letters.

To investigate the spatial distribution of galaxies, Farrah used data that recently became available from the Spitzer Wide-area InfraRed Extragalactic (SWIRE) survey, one of the largest such surveys performed by the Spitzer Space Telescope, which was launched in 2003.

A galaxy is typically made up of hundreds of billions of stars grouped tightly together. But galaxies themselves often group together into what astronomers call "large-scale structures." And, just as galaxies themselves can take on such shapes as ellipticals and spirals, so, too, can the large-scale structures, ranging from galaxy clusters to long filaments of galaxies to large, empty voids.

"You might think that galaxies are just distributed randomly across the sky, like throwing a handful of sand onto the floor," said Farrar. "But the problem is they are not, and this has been a great puzzle."

Farrah is interested in how large-scale structures form. To measure the amount of clustering in the early universe, he looked at light that had traveled for several billion years from extremely distant galaxies. From this he was able to calculate the amount of bunching in candidate galaxy clusters in the early universe.

"We wanted to find the beacons of the first stages of the formation of a galaxy cluster because, at that time, the clusters themselves had not formed yet," said Farrah.

In particular, he was interested in objects that emit strongly in the infrared and are surrounded by dense gas and dust. These objects, known as ultraluminous infrared galaxies (ULIRGs), were thought to be precursors of galaxy clusters. Farrah confirmed this by showing that ULIRGs do, indeed, tend to cluster in their early phases. The ability to pinpoint the locations of nascent galaxy clusters will enable researchers to investigate early cluster formations and when they occurred.

Farrah’s finding that distant ULIRGs are linked with large clumps of dark matter was surprising for another reason. As its name suggests, dark matter doesn’t emit light so no conventional telescope can see it. However, because dark matter has mass, its existence can be inferred by the way stars are drawn to regions where this mysterious mass is concentrated.

Unexpectedly, Farrah found that ULIRGs at different points in the history of the universe coincide with clumps of dark matter haloes of very similar masses. This observation suggests that a minimum amount of dark matter is necessary for galaxies to form and to coalesce into clusters. Farrah believes his study also provides valuable insights into understanding how dark matter helped mold the evolution of the universe.

Carol Lonsdale of NASA’s Jet Propulsion Laboratory, which manages the Spitzer Space Telescope, is the principal investigator for the SWIRE project.

Graduate student Alex Kwan is a Cornell News Service writer intern.

Press Relations Office | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>