Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Code for ’unbreakable quantum encryption generated at record speed over fiber

20.04.2006


Raw code for “unbreakable” encryption, based on the principles of quantum physics, has been generated at record speed over optical fiber at the Commerce Department’s National Institute of Standards and Technology (NIST). The work, reported today at the SPIE Defense & Security Symposium in Orlando, Fla.,* is a step toward using conventional high-speed networks such as broadband Internet and local-area networks to transmit ultra-secure video for applications such as surveillance.



The NIST quantum key distribution (QKD) system uses single photons, the smallest particles of light, in different orientations to produce a continuous binary code, or "key," for encrypting information. The rules of quantum mechanics ensure that anyone intercepting the key is detected, thus providing highly secure key exchange. The laboratory system produced this “raw” key at a rate of more than 4 million bits per second (4 million bps) over 1 kilometer (km) of optical fiber, twice the speed of NIST’s previous record, reported just last month.** The system also worked successfully, although more slowly, over 4 km of fiber.

The record speed was achieved with an error rate of only 3.6 percent, considered very low. The next step will be to process the raw key, using NIST-developed methods for correcting errors and increasing privacy, to generate "secret" key at about half the original speed, or about 2 million bps.


NIST has previously encrypted, transmitted and decrypted Web quality streaming video using secret keys generated at 1 million bps in a 1-km fiber QKD system using a slightly different quantum encoding method.*** Using the same methods for correcting errors and improving privacy with the key generated twice as fast or faster should allow real-time encryption and decryption of video signals at a resolution higher than Web quality, according to NIST physicist Xiao Tang, lead author of the paper.

“This is all part of our effort to build a prototype high-speed quantum network in our lab,” says Tang. “When it is completed, we will be able to view QKD-secured video signals sent by two cameras at different locations. Such a system becomes a QKD-secured surveillance network."

Applications for high-speed QKD might include distribution of sensitive remote video, such as satellite imagery, or commercially valuable material such as intellectual property, or confidential healthcare and financial data. In addition, high-volume secure communications are needed for military operations to service large numbers of users simultaneously and provide multimedia capabilities as well as database access.

NIST is among a number of laboratories and companies around the world developing QKD systems, which are expected to provide the next generation of data security. Conventional encryption is typically based on mathematical complexity and may be broken given sufficiently powerful computers and enough time. In contrast, QKD produces encryption codes based on the quantum states of individual photons and is considered “verifiably secure.” Under the principles of quantum physics, measuring a photon’s quantum state destroys that state. QKD systems are specifically designed so that eavesdropping causes detectable changes in the system.

NIST systems are much faster, although operating over shorter distances, than previously reported QKD systems developed by other organizations. High-speed transmission is necessary for widespread practical use of quantum encryption over broadband networks. The NIST fiber QKD system was designed by physicists, computer scientists and mathematicians and is part of a testbed for demonstrating and measuring the performance of quantum communication technologies. NIST has used the testbed to demonstrate QKD in both a fiber-based system and an optical wireless system operating between two NIST buildings. http://www.nist.gov/public_affairs/releases/quantumkeys.htm.

The NIST fiber QKD system has two channels operating over optical fibers that are wrapped around a spool between two personal computers in a laboratory. The photons are sent in different quantum states, or orientations of their electric field, representing 0 and 1. The system compensates for temperature changes and vibration, which could affect performance, with a NIST-designed module that automatically adjusts photon orientation on a time schedule. More extreme environmental changes are likely to occur in fibers buried or suspended outdoors as in telephone networks; the researchers plan to test a fiber QKD system in the field in the future.

After raw key is generated and processed, the secret key is used to encrypt and decrypt video signals transmitted over the Internet between two computers in the same laboratory. The high speed of the system enables use of the most secure cipher known for ensuring the privacy of a communications channel, in which one secret key bit, known only to the communicating parties, is used only once to encrypt one video bit (or pixel). Compressed video has been encrypted, transmitted and decrypted at a rate of 30 frames per second, sufficient for smooth streaming images, in Web-quality resolution, 320 by 240 pixels per frame.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov/public_affairs/releases/quantumkeys.htm
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Squeezing light at the nanoscale
18.06.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht The Fraunhofer IAF is a »Landmark in the Land of Ideas«
15.06.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>