Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-temperature protonic conductors

18.04.2006


The research group GMBM (Biomimetic and multifunctional materials) of the University of Seville is working on the creation of fuel batteries with protonic conductor membranes. The National Aeronautics and Space Administration (NASA) is funding this line of research.



The director of GMBM, Julián Martínez Fernández, has been collaborating with the NASA-Glenn Research Center (in Cleveland, Ohio) for thirteen years. The University of Seville’s project, funded with 200,000 €Euros, consists of developing materials that can produce non pollutant energy.

This source of clean energy is in high-temperature protonic conductors. Fuel batteries are the nucleus of the energy future based on hydrogen, more cleanness and efficiency, and an essential part of these batteries are protonic conductor membranes.


In an interview for Andalucía Investiga, Julián Martínez said that ‘as working temperature increases the efficiency of batteries, the idea is that such membranes are made of materials that are very resistant to high temperatures’. The GMBM is working ‘on the synthesis of these membranes, in their characterisation’, and by means of several agreements, ‘the application membranes are tested in the real world’.

The specific utility of their use in remote production systems, solar stations and eolic plants, lies in their performance in the reverse order. This way, the fuel cells can separate the surplus molecule in the two elements that make it up, that is, water is divided into hydrogen and oxygen, and the energy of the former is accumulated.

Hynergreen, a research division of the Abengoa group, is taking part in the implementation of the new system. It is intended that it replaces the traditionally used materials – plastic polymers-, the only problem being that they are less resistant to high temperatures.

On the contrary, the multifunctional ceramics developed by the University of Seville overcome this limitation. During an interview for Andalucía Investiga, the director of GMBM confirmed that its conductive capacity stays ‘over 1,400 degrees centigrades’.

Julián Martínez Fernández | alfa
Further information:
http://www.andaluciainvestiga.com

More articles from Physics and Astronomy:

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

nachricht Turmoil in sluggish electrons’ existence
23.05.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>