Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-temperature protonic conductors

18.04.2006


The research group GMBM (Biomimetic and multifunctional materials) of the University of Seville is working on the creation of fuel batteries with protonic conductor membranes. The National Aeronautics and Space Administration (NASA) is funding this line of research.



The director of GMBM, Julián Martínez Fernández, has been collaborating with the NASA-Glenn Research Center (in Cleveland, Ohio) for thirteen years. The University of Seville’s project, funded with 200,000 €Euros, consists of developing materials that can produce non pollutant energy.

This source of clean energy is in high-temperature protonic conductors. Fuel batteries are the nucleus of the energy future based on hydrogen, more cleanness and efficiency, and an essential part of these batteries are protonic conductor membranes.


In an interview for Andalucía Investiga, Julián Martínez said that ‘as working temperature increases the efficiency of batteries, the idea is that such membranes are made of materials that are very resistant to high temperatures’. The GMBM is working ‘on the synthesis of these membranes, in their characterisation’, and by means of several agreements, ‘the application membranes are tested in the real world’.

The specific utility of their use in remote production systems, solar stations and eolic plants, lies in their performance in the reverse order. This way, the fuel cells can separate the surplus molecule in the two elements that make it up, that is, water is divided into hydrogen and oxygen, and the energy of the former is accumulated.

Hynergreen, a research division of the Abengoa group, is taking part in the implementation of the new system. It is intended that it replaces the traditionally used materials – plastic polymers-, the only problem being that they are less resistant to high temperatures.

On the contrary, the multifunctional ceramics developed by the University of Seville overcome this limitation. During an interview for Andalucía Investiga, the director of GMBM confirmed that its conductive capacity stays ‘over 1,400 degrees centigrades’.

Julián Martínez Fernández | alfa
Further information:
http://www.andaluciainvestiga.com

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>