Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The great Easter egg hunt: The void’s incredible richness


Huge Astronomical Image of ’Empty Space’ Obtained with ESO Telescope

Part of the Deep 3 Deep Public Survey field, showing the brightest galaxy in the field ESO 570-19 (upper left) and the variable star UW Crateris. This red giant (upper right) is a variable star that is about 8 times fainter than what the unaided eye can see. An ’S’-shaped ensemble of galaxies is also visible in the lower part of the picture. Imagine: all these island universes are about the same size as our Milky Way and contain billion of stars!

An image made of about 300 million pixels is being released by ESO, based on more than 64 hours of observations with the Wide-Field Camera on the 2.2m telescope at La Silla (Chile). The image covers an ’empty’ region of the sky five times the size of the full moon, opening an exceptionally clear view towards the most distant part of our universe. It reveals objects that are 100 million times fainter than what the unaided eye can see.

Easter is in many countries a time of great excitement for children who are on the big hunt for chocolate eggs, hidden all about the places. Astronomers, however, do not need to wait this special day to get such an excitement: it is indeed daily that they look for faraway objects concealed in deep images of the sky. And as with chocolate eggs, deep sky objects, such as galaxies, quasars or gravitational lenses, come in the wildest variety of colours and shapes.

The image presented here is one of such very deep image of the sky. It is the combination of 714 frames for a total exposure time of 64.5 hours obtained through four different filters (B, V, R, and I)! It consists of four adjacent Wide-Field Camera pointings (each 33x34 arcmin), covering a total area larger than one square degree.

Yet, if you were to look at this large portion of the firmament with the unaided eye, you would just see... nothing. The area, named Deep 3, was indeed chosen to be a random but empty, high galactic latitude field, positioned in such a way that it can be observed from the La Silla observatory all over the year.

Together with two other regions, Deep 1 and Deep 2, Deep 3 is part of the Deep Public Survey (DPS), based on ideas submitted by the ESO community and covering a total sky area of 3 square degrees. Deep 1 and Deep 2 were selected because they overlapped with regions of other scientific interest. For instance, Deep 1 was chosen to complement the deep ATESP radio survey carried out with the Australia Telescope Compact Array (ATCA) covering the region surveyed by the ESO Slice Project, while Deep 2 included the CDF-S field. Each region is observed in the optical, with the WFI, and in the near-infrared, with SOFI on the 3.5-m New Technology Telescope also at La Silla.

Deep 3 is located in the Crater (’The Cup’), a southern constellation with very little interest (the brightest star is of fourth magnitude, i.e. only a factor six brighter than what a keen observer can see with the unaided eye), in between the Virgo, Corvus and Hydra constellations. Such comparatively empty fields provide an unusually clear view towards the distant regions in the Universe and thus open a window towards the earliest cosmic times. The deep imaging data can for example be used to pre-select objects by colour for follow-up spectroscopy with ESO’s Very Large Telescope instruments.

But being empty is only a relative notion. True, on the whole image, the SIMBAD Astronomical database references less than 50 objects, clearly a tiny number compared to the myriad of anonymous stars and galaxies that can be seen in the deep image obtained by the Survey!

Among the objects catalogued is the galaxy visible in the top middle right (see also PR Photo 14b/06) and named ESO 570-19. Located 60 million light-years away, this spiral galaxy is the largest in the image. It is located not so far - on the image! - from the brightest star in the field, UW Crateris. This red giant is a variable star that is about 8 times fainter than what the unaided eye can see. The second and third brightest stars in this image are visible in the lower far right and in the lower middle left. The first is a star slightly more massive than the Sun, HD 98081, while the other is another red giant, HD 98507.

In the image, a vast number of stars and galaxies are to be studied and compared. They come in a variety of colours and the stars form amazing asterisms (a group of stars forming a pattern), while the galaxies, which are to be counted by the tens of thousands come in different shapes and some even interact or form part of a cluster.

The image and the other associated data will certainly provide a plethora of new results in the years to come. In the meantime, why don’t you explore the image with the zoom-in facility, and start your own journey into infinity? Just be careful not to get lost. And remember: don’t eat too many of these chocolate eggs!

Henri Boffin | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>