Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slow motion mergers in galaxy clusters provide conditions to transform spirals to smooth disks

05.04.2006


Astronomers at Liverpool John Moores University may have solved the mystery of how spiral galaxies in clusters are transformed over time into smooth disks. Results from a study of galaxy clusters confirms that the slow-motion conditions needed for the transformation are occurring among populations of galaxies falling towards the cluster centre.



Over the past several billion years the predominant shape of disc galaxies in clusters has changed from a spiral to a smooth disk. Theory suggests that this change occurs when two galaxies of unequal mass merge and gravitational effects pull gas to the galaxies nucleus, sweeping away the spiral structure and leaving behind a smooth, barren, thickened disk known as a lenticular galaxy. However, galaxies orbiting in clusters move at high speeds and in random directions, which should mean that conditions needed for these slow interactions rarely occur. Instead, multiple rapid encounters between galaxies, known as ’galaxy harassment’, are dominant but these types of fast encounters cannot easily form the smooth disks.

The group from Liverpool John Moores compared eight examples of populations of galaxies falling towards the centres of galaxy clusters with control samples of galaxies far from the clusters. They found that the infalling galaxies in the cluster were predominantly distorted in shape and had a higher than normal rates of star formation. Between a half and three-quarters of these galaxies were very close by to another galaxy or appeared to be merging with a companion galaxy, which suggested that interactions and mergers are more common in galaxies falling into the cluster than in the control sample.


"Our findings are very exciting because these results suggest that galaxies are more likely to merge when falling into a cluster and this may explain why clusters today have so few spirals and so many lenticular galaxies" said Dr Chris Moss, who will be presenting the results at the Royal Astronomical Society’s National Astronomy Meeting on the 5th April.

The results suggest the conditions needed for slow galaxy interactions and mergers are more likely to occur in galaxies falling into a galaxy cluster compared to the general population of galaxies outside clusters.

Since infalling of galaxies into clusters was greater in the past, such interactions and mergers may have contributed significantly to the transformation of the past population of cluster spirals to lenticular galaxies in present-day clusters.

The observations were carried out over the past several years using the JKT (Jacobus Kapteyn Telescope) and the Nordic Optical telescope, La Palma based on earlier survey work using the Burrell Schmidt Telescope, Kitt Peak National Observatory.

Anita Heward | alfa
Further information:
http://www.astro.livjm.ac.uk/press/chrismoss.html
http://www.ras.org.uk

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>