Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cannibal stars like their food hot, XMM-Newton reveals

24.03.2006


ESA’s XMM-Newton has seen vast clouds of superheated gas, whirling around miniature stars and escaping from being devoured by the stars’ enormous gravitational fields - giving a new insight into the eating habits of the galaxy’s ‘cannibal’ stars.


A hot gas cloud whirling around a miniature ’cannibal’ star



The clouds of gas range in size from a few hundred thousand kilometres to a few million kilometres, ten to one hundred times larger than the Earth. They are composed of iron vapour and other chemicals at temperatures of many millions of degrees.

"This gas is extremely hot, much hotter than the outer atmosphere of the Sun," said Maria Díaz Trigo of ESA’s European Science and Technology Research Centre (ESTEC), who led the research.


ESA’s XMM-Newton x-ray observatory made the discovery when it observed six so-called ‘low-mass X-ray binary’ stars (LMXBs). The LMXBs are pairs of stars in which one is the tiny core of a dead star.

Measuring just 15–20 kilometres across and comparable in size to an asteroid, each dead star is a tightly packed mass of neutrons containing more than 1.4 times the mass of the Sun.

Its extreme density generates a powerful gravitational field that rips gas from its ‘living’ companion star. The gas spirals around the neutron star, forming a disc, before being sucked down and crushed onto its surface, a process known as ‘accretion’.

The newly discovered clouds sit where the river of matter from the companion star strikes the disc. The extreme temperatures have ripped almost all of the electrons from the iron atoms, leaving them carrying extreme electrical charges. This process is known as ‘ionisation’.

The discovery solves a puzzle that has dogged astronomers for several decades. Certain LMXBs appear to blink on and off at X-ray wavelengths. These are ‘edge-on’ systems, in which the orbit of each gaseous disc lines up with Earth.

In previous attempts to simulate the blinking, clouds of low-temperature gas were postulated to be orbiting the neutron star, periodically blocking the X-rays. However, these models never reproduced the observed behaviour well enough.

XMM-Newton solves this by revealing the ionised iron. "It means that these clouds are much hotter than we anticipated," said Díaz. With high-temperature clouds, the computer models now simulate much better the dipping behaviour.

Some 100 known LMXBs populate our galaxy, the Milky Way. Each one is a stellar furnace, pumping X-rays into space. They represent a small-scale model of the accretion thought to be taking place in the very heart of some galaxies. One in every ten galaxies shows some kind of intense activity at its centre.

This activity is thought to be coming from a gigantic black hole, pulling stars to pieces and devouring their remains. Being much closer to Earth, the LMXBs are easier to study than the active galaxies.

"Accretion processes are still not well understood. The more we understand about the LMXBs, the more useful they will be as analogues to help us understand the active galactic nuclei," says Díaz.

Arvind Parmar | alfa
Further information:
http://www.esa.int/esaSC/SEM7T6OVGJE_index_0.html

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>