Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hackers beware! New technique uses photons, physics to foil codebreakers

23.02.2006


Quantum cryptography allows transmission of data through fibre optic cable´s

For governments and corporations in the business of transmitting sensitive data such as banking records or personal information over fibre optic cables, a new system demonstrated by University of Toronto researchers offers the protective equivalent of a fire-breathing dragon.

“Quantum cryptography is trying to make all transmissions secure, so this could be very useful for online banking, for example,” says Professor Hoi-Kwong Lo, an expert in physics and electrical and computer engineering at U of T’s Centre for Quantum Information and Quantum Control and the senior author of a new study about the technique. “The idea can be implemented now, because we actually did the experiment with a commercial device.”



The study describes the first experimental proof of a quantum decoy technique to encrypt data over fibre optic cable. In quantum cryptography, laser light particles (photons) carry complex encryption keys through fibre optic cables, dramatically increasing the security of transmitted data. Conventional encryption is based on the assumed complexity of mathematical problems that traditional computers can solve. But quantum cryptography is based on fundamental laws of physics — specifically, Heisenberg’s Uncertainty Principle, which tells us that merely observing a quantum object alters it.

The technique varies the intensity of photons and introduces photonic “decoys,” which were transmitted over a 15-kilometre telecommunication fibre. After the signals are sent, a second broadcast tells the receiving computer which photons carried the signal and which were decoys. If a hacker tries to “eavesdrop” on the data stream to figure out the encryption key, the mere act of eavesdropping changes the decoys — a clear sign to the receiving computer that the data has been tampered with.

The study appears in the Feb. 24 issue of Physical Review Letters and was funded by Connaught, the Natural Sciences and Engineering Research Council of Canada, the Canada Research Chairs program, the Canada Foundation for Innovation, id Quantique, the Ontario Innovation Trust, a Premier’s Research Excellence Award, the Canadian Institute for Photonics Innovations, the Canadian Institute for Advanced Research and the University of Toronto.

Contact:

Hoi-Kwong Lo, Centre for Quantum Information and Quantum Control, University of Toronto; e-mail: hklo@comm.utoronto.ca, 416-946-5525

Nicolle Wahl | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>