Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid galaxy merging dominates universe’s early history

20.02.2006


A new study by a researcher at The University of Nottingham has provided the first observational evidence of how massive galaxies in our universe formed.



The results of this study have major implications for many other areas of research and are being used by astronomers to explain seemingly unrelated processes such as how massive black holes and the universe’s stars came to be.

The research, led by Dr. Christopher J. Conselice of the University’s School of Physics and Astronomy, is published in the February 20th edition of the Astrophysical Journal.


It uses the deepest images taken by the Hubble Space Telescope to study galaxies when they were only two billion years old. His team has found that the majority of the most massive galaxies in the early universe are undergoing multiple and spectacular mergers.

These mergers lead to the creation of new stars from colliding gas clouds and likely feed and grow the masses of black holes lurking in the centre of all galaxies.

The work is helping to definitively confirm what scientists have long hoped for - massive galaxies form when smaller galaxies merge together - a major and previously unconfirmed prediction of the cosmological standard model.

"The results show us that the most massive galaxies we see in today’s universe, which are passive and old, were once undergoing rapid mergers with each other, which it turns out is how they form," said Conselice.

While distant galaxies have been studied for over a decade, it has until now remained a mystery how they evolved into the galaxies we see today. Young galaxies have very low masses and astronomers have long been puzzled by how these systems turn into massive galaxies in the local universe.

The Conselice results demonstrate that a typical massive galaxy in today’s universe has undergone four to five mergers with other galaxies to transform from these young low mass systems into the giant galaxies.

These mergers are very rare today, with only about one per cent of galaxies merging, whereas 10 billion years ago, nearly all massive galaxies were undergoing mergers. An analysis technique developed by Conselice over a period of more than 10 years was used on the deepest images ever taken of the universe to make these discoveries.

The results further show that massive galaxies did not form rapidly, within a few million years after the Big Bang, neither did they form gradually over an extended period of time. In a surprising finding, almost all of this merger activity occurred from the birth of the universe to about six billion years ago.

Dr. Conselice added: "Perhaps the most amazing thing about these results is that massive galaxy formation is largely over when the universe is half its current age. This means that all this merging activity was somehow curtailed by an unknown process."

The research may hold clues about the formation of our own galaxy. The Milky Way contains spiral arms, which are not thought to form through the merger process. However, at the centre of our galaxy is a spherical system of stars called a bulge - a high-density region featuring many old stars and a massive black hole, which probably formed as a result of these mergers.

The research could also help astronomers to see into the Milky Way’s future - it is possible that our galaxy will itself merge with Andromeda, our nearest neighbouring large galaxy in around a billion years from now. This would see the destruction of the spiral disk that surrounds the bulge and change dramatically the shape of our galaxy, as well as significantly altering the positions of stars we see in the night sky.

Dr. Christopher J. Conselice | alfa
Further information:
http://www.nottingham.ac.uk/~ppzcc1/massivegal.html

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>