Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s longest laser invented

15.02.2006


Academics at Aston University in Birmingham, UK have invented what is thought to be the world’s longest laser. They have transformed an optical fibre 75 kilometres long into the laser, which the team hopes will improve long distance transmissions across the World.



The new laser is special because it can transmit light signals over such a long distance without any loss of power, so the signal that is being sent barely deteriorates. When normal telephone conversations or data sent over the internet are converted to light in order to travel through standard optical fibres the signals lose around 5 per cent of their power for every kilometre that they travel. The signals then have to be amplified to ensure that they reach their destination. But any time the signals get amplified, the background noise gets amplified too, until it gets so high the signals cannot be understood anymore.

Now Dr Juan Diego Ania Castañón and his colleagues at Aston University have used a special process called the Raman effect (a natural phenomenon that affects light passing through a material) to transform a long optical fibre into an ultra-long laser. Lasers inject light at each end, which makes some of the fibre’s atoms give out more energy and emit photons (particles of light) of a longer wavelength. These photons are reflected back into the fibre by special mirrors at each end of the optical link. The fibre then stores a stable, uniform amount of laser light that travels with the signals and strengthens them, enabling them to move across the fibre at full power without suffering any loss, so removing the need to amplify the signals.


The discovery is tremendously exciting, not only in the world of science, but in the world of telecommunications.

Dr. Ania-Castañón explains: ‘Lossless transmission of data has always been a dream goal in the world of communications. The development of a simple method to implement nearly ideal links between receiver and sender paves the way to important advances in long-distance telecommunications and opens exciting possibilities for research in other fields.’

Juan Diego Ania-Castanon | alfa
Further information:
http://www.aston.ac.uk

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>