Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s longest laser invented

15.02.2006


Academics at Aston University in Birmingham, UK have invented what is thought to be the world’s longest laser. They have transformed an optical fibre 75 kilometres long into the laser, which the team hopes will improve long distance transmissions across the World.



The new laser is special because it can transmit light signals over such a long distance without any loss of power, so the signal that is being sent barely deteriorates. When normal telephone conversations or data sent over the internet are converted to light in order to travel through standard optical fibres the signals lose around 5 per cent of their power for every kilometre that they travel. The signals then have to be amplified to ensure that they reach their destination. But any time the signals get amplified, the background noise gets amplified too, until it gets so high the signals cannot be understood anymore.

Now Dr Juan Diego Ania Castañón and his colleagues at Aston University have used a special process called the Raman effect (a natural phenomenon that affects light passing through a material) to transform a long optical fibre into an ultra-long laser. Lasers inject light at each end, which makes some of the fibre’s atoms give out more energy and emit photons (particles of light) of a longer wavelength. These photons are reflected back into the fibre by special mirrors at each end of the optical link. The fibre then stores a stable, uniform amount of laser light that travels with the signals and strengthens them, enabling them to move across the fibre at full power without suffering any loss, so removing the need to amplify the signals.


The discovery is tremendously exciting, not only in the world of science, but in the world of telecommunications.

Dr. Ania-Castañón explains: ‘Lossless transmission of data has always been a dream goal in the world of communications. The development of a simple method to implement nearly ideal links between receiver and sender paves the way to important advances in long-distance telecommunications and opens exciting possibilities for research in other fields.’

Juan Diego Ania-Castanon | alfa
Further information:
http://www.aston.ac.uk

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>