Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Integral looks at Earth to seek source of cosmic radiation

13.02.2006


Cosmic space is filled with continuous, diffuse high-energy radiation. To find out how this energy is produced, the scientists behind ESA’s Integral gamma-ray observatory have tried an unusual method: observing Earth from space.

During a four-phase observation campaign started on 24 January this year, continued until 9 February, Integral has been looking at Earth. Needing complex control operations from the ground, the satellite has been kept in a fixed orientation in space, while waiting for Earth to drift through its field of view.

Unusually, the main objective of these observations is not Earth itself, but what can be seen in the background when Earth moves in front of the satellite. This is the origin of the diffuse high-energy radiation known as the ‘cosmic X-ray background’.



Until now with Integral, this was never studied simultaneously with such a broad band of energy coverage since the 1970s, and certainly not with such advanced instruments.

Astronomers believe that the ‘cosmic X-ray background’ is produced by numerous supermassive and accreting black holes, distributed throughout deep space. These powerful monsters attract matter, which is then hugely accelerated and so emit high energy in the form of gamma- and X-rays.

X-ray observatories such as ESA’s XMM-Newton and NASA’s Chandra have been able to identify and directly count a large number of individual sources – likely black holes – that already account for more than 80 percent of the measured cosmic diffuse X-ray background.

However, very little is known about the origin of the highest energy band of this cosmic radiation, above the range of these two satellites. This is spread out in the form of high-energy X- and gamma-rays, within the reach of Integral.

It is believed that most of the gamma-ray background emission is produced by individual supermassive black holes too, but scientists need to couple this emission with clearly identified sources to make a definitive statement. In fact, other sources such as far-away galaxies or close weak sources could be also be responsible.

Identifying the individual sources in the gamma-ray range that make up the diffuse cosmic background is much more difficult than counting the individual X-ray sources. In fact, the powerful gamma-rays cannot be focused with lenses or mirrors, because they simply pass straight through.

So to produce a gamma-ray image of a source, Integral uses a ‘mask’ technique - an indirect imaging method that consists of detecting the shadow of a mask placed on top of the telescope, as projected by a gamma-ray source.

During the observations, the scientists used Earth’s disk as an ‘extra mask’. Earth naturally blocks, or shades, the highest energy flux from millions of distant black holes.

Their combined flux can be accurately measured in an indirect way, that is by measuring the amplitude and the energy spectrum of the energy drop when Earth passes through Integral’s field of view. Once this is known, scientists can eventually try to connect the radiation to individual sources.

All the observations were very successful, as all the gamma-ray and X-ray instruments on board Integral (IBIS, SPI and JEM-X) recorded clear and unambiguous signals in line with expectations.

The Integral scientists are already proceeding with the analysis of the data. The aim is to ultimately understand the origin of the highest energy background radiation and, possibly, provide new clues on the history of growth of super-massive black holes since the early epochs of the Universe.

Arvind Parmar | EurekAlert!
Further information:
http://www.esa.int/esaSC/SEM8EVLVGJE_index_0.html
http://www.esa.int

More articles from Physics and Astronomy:

nachricht Midwife and signpost for photons
11.12.2017 | Julius-Maximilians-Universität Würzburg

nachricht New research identifies how 3-D printed metals can be both strong and ductile
11.12.2017 | University of Birmingham

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>