Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA’s ‘Deep Impact’ Team Reports First Evidence of Cometary Ice

03.02.2006


Comet Tempel 1, target of last year’s July 4 cosmic collision, contains small amounts of surface water ice. Reported in Science by members of NASA’s Deep Impact mission, this finding marks the first evidence of surface ice on any comet.


First evidence of water ice on a comet - The three small areas of water ice on the surface of Tempel 1 appear in this image, taken by an instrument aboard NASA’s Deep Impact spacecraft. [Photo: NASA]



Comet Tempel 1, which created a flamboyant Fourth of July fireworks display in space last year, is covered with a small amount of water ice. These results, reported by members of NASA’s Deep Impact team in an advanced online edition of Science, offer the first definitive evidence of surface ice on any comet.

“We have known for a long time that water ice exists in comets, but this is the first evidence of water ice on comets,” said Jessica Sunshine, Deep Impact co-investigator and lead author of the Science article.


A chief scientist with Science Applications International Corporation who holds three Brown University degrees, Sunshine said the discovery offers important insight into the composition of comets – small, Sun-orbiting space travelers that are believed to be leftovers from the formation of the solar system.

“Understanding a comet’s water cycle and supply is critical to understanding these bodies as a system and as a possible source that delivered water to Earth,” she said. “Add the large organic component in comets and you have two of the key ingredients for life.”

The findings help satisfy one of the major goals of the Deep Impact mission: Find out what is on the inside – and outside – of a comet.

To that end, NASA’s Jet Propulsion Laboratory teamed with the University of Maryland to slam a space probe into Tempel 1, then analyze materials from the comet’s surface and interior. On July 4, 2005, mission members hit their mark when the copper-tipped probe collided with Tempel 1 and created a spectacular extraterrestrial explosion 83 million miles from Earth.

Since then, the Deep Impact team has reported a few key findings. These include an abundance of organic matter in Tempel 1’s interior as well as its likely origins – the region of the solar system now occupied by Uranus and Neptune.

According to the new research in Science, the comet’s surface features three pockets of thin ice. The area the ice covers is small. The surface area of Tempel 1 is roughly 45 square miles or 1.2 billion square feet. The ice, however, covers roughly 300,000 square feet. And only 6 percent of that area consists of pure water ice. The rest is dust.

“It’s like a seven-acre skating rink of snowy dirt,” said Peter Schultz, professor of geological sciences at Brown, Deep Impact co-investigator and co-author on the Science paper.

Sunshine, Schultz and the rest of the team arrived at their findings by analyzing data captured by an infrared spectrometer, an optical instrument that uses light to determine the composition of matter.

Based on this spectral data, it appears that the surface ice used to be inside Tempel 1 but became exposed over time. The team reports that jets – occasional blasts of dust and vapor – may send this surface ice, as well as interior ice, to the coma, or tail, of Tempel 1.

“So we know we’re looking at a geologically active body whose surface is changing over time,” Schultz said. “Now we can begin to understand how and why these jets erupt.”

NASA funded the work. For more information on Deep Impact, visit the JPL Web site.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>