Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Quonset huts to ballerinas

24.01.2006


Princeton scientists solve a nanotech mystery

A team of Princeton researchers has untangled the mystery behind a puzzling phenomenon first observed more than a decade ago in the ultra-small world of nanotechnology.

Why is it, researchers wondered, that tiny aggregates of soap molecules, known as surfactant micelles, congregate as long, low arches resembling Quonset huts once they are placed on a graphite surface?



To fellow scientists and engineers, this question and the researchers’ answer is tantalizing since the discovery gives insight into "guided self-assembly," an important technique in nanotechnology where molecules arrange themselves spontaneously into certain structures. It may also one day lead to valuable technological applications such as the creation of anti-corrosion coatings for metals and bio-medical applications involving plaque formation with proteins.

In a paper appearing in the January 13 issue of Physical Review Letters, a premier physics journal, Dudley Saville, Ilhan Aksay, Roberto Car, and their colleagues explain how they unraveled the mystery.

The scientists discovered they and others had been operating on the flawed assumption that - in response to the texture of the graphite beneath them - surfactant molecules assembled themselves into static ’Quonset Hut’ shapes that stayed put.

Because of new atomic force microscope imaging done by research associate Hannes Schniepp, the Princeton scientists were able to see that the micelle structures were not static but, rather, constantly on the move, building and rebuilding themselves over and over again into the same structures.

To understand what the researchers discovered, it is helpful to switch metaphors. Now, rather than envisioning the molecular assemblies as static Quonset huts, think of them as ensembles of ballerinas in constant motion.

"We spent a year trying to describe why these rods orient themselves on the graphite surface," Saville said. "But it turns out that we had imaged the dancers in freeze-frame. What we did not take into account in our original thinking was that micelles on the surface are in constant rotary motion."

Under most conditions, small particles make tiny random movements known as Brownian motion. Powered by Brownian motion, a single surfactant can be thought of as a dancer spinning about on her own; it is impossible to predict the precise pattern of movement.

What the researchers discovered was that, when molecules assembled into a micelle and the micellar dancer moved on the graphite "stage," it did so in a choreographed fashion.

Something was overriding the rotary Brownian motion. What was it?

"Saville and his coauthors combined theory at the surfactant and micellar scales with a series of careful experiments to resolve the dilemma," said William Russel, the Arthur W. Marks ’19 professor of chemical engineering and dean of the graduate school at Princeton. "Long-range van der Waals forces, which are orientation-dependent, exert a torque on the entire micelle that is strong enough to overcome the randomizing tendency of Brownian motion."

Metaphorical translation: "When micelles appear on the graphite stage, they begin dancing to the music of a van der Waals orchestra," Saville said. The van der Waals interactions – weak links between the electron clouds of the micelles and the graphite below– make the micelles orient in specific directions. Basic work by research associates Je-Luen Li and Jaehun Chun provided a description of the angular variation of the van der Waals interaction and this enabled the group to close the loop.

The scientists said their work opens new horizons to explore. They still have not figured out, for example, how micelles interact with one another on the surface to form large patterned arrays. Or how the micelles disintegrate and reform in the same patterns.

"You need a critical number of dancers for this to happen but we have no idea how many," Aksay said. Moreover, he noted, the researchers can now move on to other interesting questions now that they know that the micelles are dynamic and understand the time frame in which they move. "This opens up the prospect for even more rigorous thinking."

Teresa Riordan | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>