Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Memory design breakthrough can lead to faster computers

13.01.2006


Team improves infinitesimal rings for speedy, reliable, efficient magnetic memory



Imagine a computer that doesn’t lose data even in a sudden power outage, or a coin-sized hard drive that could store 100 or more movies.

Magnetic random-access memory, or MRAM, could make these possible, and would also offer numerous other advantages. It would, for instance, operate at much faster than the speed of ordinary memory but consume 99 percent less energy.


The current challenge, however, is the design of a fast, reliable and inexpensive way to build stable and densely packed magnetic memory cells.

A team of researchers at The Johns Hopkins University, writing in the Jan. 13 issue of Physical Review Letters, has come up with one possible answer: tiny, irregularly shaped cobalt or nickel rings that can serve as memory cells. These "nanorings" can store a great quantity of information. They also are immune to the problem of "stray" magnetic fields, which are fields that "leak" from other kinds of magnets and can thus interfere with magnets next to them.

"It’s the asymmetrical design that’s the breakthrough, but we are also very excited about the fast, efficient and inexpensive method we came up with for making them," said paper co-author Frank Q. Zhu, a doctoral candidate in the Henry A. Rowland Department of Physics and Astronomy in the Krieger School of Arts and Sciences at Johns Hopkins.

The nanorings are extremely small, with a diameter of about 100 nanometers. A single nanometer is one billionth of a meter. A single strand of human hair can hold 1 million rings of this size, Zhu says.

The asymmetrical design allows more of the nanorings to end up in a so-called "vortex state," meaning they have no stray field at all. With no stray field to contend with, Zhu’s team’s nanorings act like quiet neighbors who don’t bother each other and, thus, can be packed together extremely densely. As a result, the amount of information that can be stored in a given area is greatly increased.

Fabrication of the nanorings is a multistep procedure involving self-assembly, thin film deposition and dry etching. The key to creating the irregular rings, Zhu said, is to -- while etching the rings with an argon ion beam at the end of the process -- tilt the substrate on which the rings are formed.

"In our previous study, we found that 100 nanometer symmetric nanorings have only about a 40 percent chance to get vortex state," Zhu said. "But the asymmetric nanorings have between a 40 percent and 100 percent chance to get vortex state. This chance can be controlled on-demand by utilizing the direction of magnetic field."

Lisa De Nike | EurekAlert!
Further information:
http://www.jhu.edu
http://scitation.aip.org/dbt/dbt.jsp?KEY=PRLTAO&Volume=96&Issue=1

More articles from Physics and Astronomy:

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Link Discovered between Immune System, Brain Structure and Memory

26.04.2017 | Life Sciences

New survey hints at exotic origin for the Cold Spot

26.04.2017 | Physics and Astronomy

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>