Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers shed surprising light on our galaxy’s black hole

11.01.2006


In the most comprehensive study of Sagittarius A* (Sgr A*), the enigmatic supermassive black hole in the center of the Milky Way Galaxy, astronomers -- using nine ground and space-based telescopes including the Hubble Space Telescope and the XMM-Newton X-ray Observatory -- have discovered that Sgr A* produces rapid flares close to the innermost region of the black hole in many different wavelengths and that these emissions go up and down together.



This insight into the frequent bursts of radiation observed shooting off the black hole like firecrackers -- similar to solar flares -- will help scientists better understand the dynamics of Sgr A* and the source of its flares.

Farhad Yusef-Zadeh, professor of physics and astronomy at Northwestern University, who led a team of 11 astronomers from around the world in the study of Sgr A*, presented the team’s results at a press conference today (Jan. 10) at the American Astronomical Society meeting in Washington, D.C.


"We observed that the less energetic infrared flares occur simultaneously with the more energetic X-ray flares as well the submillimeter flares," said Yusef-Zadeh. "From this, we infer that the particles that are accelerated near the black hole give rise to X-ray, infrared and submillimeter emission. In addition, not all of the material that approaches the black hole gets sucked in. Some of the material may be ejected from the vicinity of the central black hole or event horizon. Our observations hint that these flares have enough energy to escape from the closest confines of the supermassive black hole’s sphere of influence."

Yusef-Zadeh and his team observed Sgr A* during two four-day periods in 2004, one in March and one in September. (2004 marked the 30th anniversary of the discovery of Sgr A*, which has a mass equivalent to 3.6 million Suns and is located in the Sagittarius constellation.) The campaign captured data across a wide spectrum, including radio, millimeter, submillimeter, infrared, X-ray and soft gamma ray wavelengths.

The astronomers also determined that the real engine of the flare activity is in the infrared wavelength. Using observations from Hubble’s Near-Infrared Camera and Multi-Object Spectrometer, they found infrared activity 40 percent of the time, more than was observed at any other wavelength.

"This is not something we expected," said Yusef-Zadeh. "Other black holes in other galaxies don’t show this flare activity. We believe it is the dynamics of the captured material -- very close to the event horizon of the black hole -- that produces the flares. And the flares are fluctuating at low levels, like flickers. The flare radiation results from fast-moving materials in the innermost region of the black hole. It’s a way of life for Sgr A*, this frequent low level of activity."

Because flares are variable and not constant, the study required a large number of telescopes devoted to studying flare activity simultaneously. The space-based telescopes used in this observation campaign were the Hubble Space Telescope, the XMM-Newton X-ray Observatory and the International Gamma-Ray Astrophysics Laboratory (INTEGRAL). The ground telescopes used were Very Large Array (VLA) of the National Radio Astronomy Observatory; Caltech Submillimeter Observatory (CSO); Submillimeter Telescope (SMT); Nobeyama Array (NMA); Berkeley Illinois Maryland Array (BIMA); and Australian Telescope Compact Array (ATCA).

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>