Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A FASTT first from the Office of Naval Research

30.12.2005


First air-breathing, liquid fuel-powered scramjet takes flight



Before the sun had even risen over Wallops Island, Va., on 10 December 2005, a joint Office of Naval Research/Defense Advanced Research Projects Agency vehicle achieved a world first. At an altitude of 63,000 feet, the Freeflight Atmospheric Scramjet Test Technique (FASTT) vehicle became the first air-breathing, liquid hydrocarbon fuel-powered scramjet engine to fly.

After launching from the NASA Wallops Flight Facility on a two-stage, Terrier-Orion unguided solid-rocket system, the approximately 106-inch long, 11-inch diameter, missile-shaped vehicle raced at 5,300 feet per second (Mach 5.5) for 15 seconds before a controlled splashdown into the Atlantic Ocean. The FASTT vehicle project is part of the joint ONR/DARPA Hypersonic Flight Demonstration (HyFly) program and is designed to demonstrate low-cost flight test techniques and obtain in-flight engine performance data at hypersonic speeds. The overall goal of HyFly is to flight-test key technologies enabling a long range, high-speed cruise missile that can cruise at speeds up to Mach 6.


A scramjet is a supersonic combustion ramjet. Ramjets, which use low subsonic combustion are limited in speed capability. Scramjets have the ability to operate above Mach 5. The hybrid engines of HyFly have no moving parts and offer a lighter weight alternative to other types of propulsion systems. Instead of carrying an oxygen tank, air passing through the vehicle is mixed with fuel. The HyFly program is based on a hybrid scramjet technology called the dual combustor ramjet, developed at the Johns Hopkins University Applied Physics Laboratory. In this powerplant, supersonic air entering through one inlet is slowed to subsonic speeds, mixed with JP-10 fuel and ignited. The expanding combustion products are then mixed with supersonic air entering through a second inlet and are more completely burned in a supersonic combustor.

By using a conventional fuel and not relying on toxic additives as do other scramjet designs, this engine is safer for shipboard use. It can be powered all the way to the target, and that target or its coordinates can be changed as necessary. The test program will culminate in successful tests of sustained flight at Mach 6, thereby demonstrating the readiness of key technologies such as the liquid-hydrocarbon fueled hybrid scramjet engine and high temperature capable structures.

Jennifer Huergo | EurekAlert!
Further information:
http://www.onr.navy.mil

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>