Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Student-built instrument set to launch on Pluto mission

30.12.2005


The University of Colorado at Boulder’s long heritage with NASA planetary missions will continue Jan. 17 with the launch of a student space dust instrument on the New Horizons Mission to Pluto from Florida’s Kennedy Space Center.


All three components of the SDC assembled and ready to be put into the New Horizons spacecraft. If you will notice, the dust detector itself is protected from dust hitting it before it is supposed to.



As the first student-built instrument ever selected by the space agency to fly on a planetary mission, the CU-Boulder Student Dust Counter, or SDC, will monitor the density of dust grains in space as New Horizons buzzes to Pluto and beyond. The dust grains are of high interest to researchers because they are the building blocks of the solar system’s planets, said Research Associate Mihaly Horanyi of the Laboratory for Atmospheric and Space Physics, principal investigator for the student instrument.

The student team hopes to identify as-yet-undetected clumps of dust in the dust disk of the solar system caused by the gravity of the outer planets, said Horanyi, who is also a professor in the physics department. "This will help us to understand the formation of our own planets, as well as those seen in dust disks around other stars," he said.


"Just as importantly, this effort will provide students with an important role in a pioneering space mission for years to come," said Horanyi.

Instruments and experiments designed and built for NASA missions by CU-Boulder’s LASP since the 1970s have visited Venus, Mars, Jupiter, Saturn, Uranus and Neptune. In addition, NASA’s MESSENGER spacecraft, now en route to Mercury, is carrying a $7 million device designed and built by CU-Boulder’s LASP.

The SDC detector is a thin, plastic film resting on a honeycombed aluminum structure the size of a cake pan mounted on the outside of the spacecraft, said Horanyi. A small electronic box inside the spacecraft will function as the instrument’s "brain" to assess each individual dust particle that strikes the detector during the mission.

The researchers are particularly interested in the dust that New Horizons will encounter in the Kuiper Belt, a vast region beyond the orbit of Neptune that contains thousands of ancient, icy objects, said Horanyi. Kuiper Belt objects are thought to contain samples of ancient material formed in the solar system billions of years ago.

Microscopic-sized dust grains hitting the SDC will create unique electrical signals, allowing the CU-Boulder students to infer the mass of each particle, said CU-Boulder doctoral student David James, who has been working on the electronics of the dust detection system on SDC for the past two years. While the spacecraft will be in "sleep mode" for much of the cruise to Pluto, CU-Boulder’s dust detector will remain turned on to catch space dust during the journey, James said.

The SDC team is comprised of CU-Boulder students from electrical and computer engineering, mechanical engineering, computer science, journalism and business who designed and fabricated the instrument under the supervision of LASP faculty and staff. The students will share their findings and mission experiences with students and the public around the world via the Internet and public presentations.

"I never dreamed I would get the chance to actually work on a space mission as an undergraduate student," said Elizabeth Grogan, who began working on the SDC as software engineer while a senior at CU-Boulder. She now works at LASP as a research assistant on the New Horizons effort. "I got much more hands-on experience on this project than I could have ever gotten in a classroom," Grogan said.

The National Academy of Sciences has ranked the exploration of Pluto, its moon, Charon, and the Kuiper Belt among the highest priorities for space exploration, citing their importance in advancing the understanding of the solar system.

"We expect that several generations of CU-Boulder students will be involved in the mission during the next two decades," Horanyi said.

The New Horizons mission is led by the Southwest Research Institute’s Department of Space Studies in Boulder under the direction of Alan Stern. New Horizons was designed and built at Johns Hopkins University’s Applied Physics Laboratory in Laurel, Md., which will operate the spacecraft for NASA. The piano-sized probe will launch on a Lockheed Martin Atlas 5 rocket from Cape Kennedy to begin its10-year journey to Pluto.

The 1,000-pound probe, which will be the fastest spacecraft ever launched, will approach Pluto and Charon as early as summer 2015. In addition to the dust counter, the instrument suite includes two cameras, two imaging spectrometers and two particle spectrometers to gather data on the surfaces, atmospheres and temperatures of Pluto, Charon and the Kuiper Belt objects.

Horanyi said a group of current and former CU-Boulder students who worked on SDC are going to the Florida launch, many paying their own way from around the world. "Many of these students have moved on to other institutions and careers, but they are excited to see this mission finally launch," he said. "If all goes well, we will be having another reunion in 10 years when the spacecraft reaches Pluto."

Mihaly Horanyi | EurekAlert!
Further information:
http://www.colorado.edu/
http://pluto.jhuapl.edu
http://lasp.colorado.edu/programs_missions/present/off_site/sdc.html

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>