Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Student-built instrument set to launch on Pluto mission

30.12.2005


The University of Colorado at Boulder’s long heritage with NASA planetary missions will continue Jan. 17 with the launch of a student space dust instrument on the New Horizons Mission to Pluto from Florida’s Kennedy Space Center.


All three components of the SDC assembled and ready to be put into the New Horizons spacecraft. If you will notice, the dust detector itself is protected from dust hitting it before it is supposed to.



As the first student-built instrument ever selected by the space agency to fly on a planetary mission, the CU-Boulder Student Dust Counter, or SDC, will monitor the density of dust grains in space as New Horizons buzzes to Pluto and beyond. The dust grains are of high interest to researchers because they are the building blocks of the solar system’s planets, said Research Associate Mihaly Horanyi of the Laboratory for Atmospheric and Space Physics, principal investigator for the student instrument.

The student team hopes to identify as-yet-undetected clumps of dust in the dust disk of the solar system caused by the gravity of the outer planets, said Horanyi, who is also a professor in the physics department. "This will help us to understand the formation of our own planets, as well as those seen in dust disks around other stars," he said.


"Just as importantly, this effort will provide students with an important role in a pioneering space mission for years to come," said Horanyi.

Instruments and experiments designed and built for NASA missions by CU-Boulder’s LASP since the 1970s have visited Venus, Mars, Jupiter, Saturn, Uranus and Neptune. In addition, NASA’s MESSENGER spacecraft, now en route to Mercury, is carrying a $7 million device designed and built by CU-Boulder’s LASP.

The SDC detector is a thin, plastic film resting on a honeycombed aluminum structure the size of a cake pan mounted on the outside of the spacecraft, said Horanyi. A small electronic box inside the spacecraft will function as the instrument’s "brain" to assess each individual dust particle that strikes the detector during the mission.

The researchers are particularly interested in the dust that New Horizons will encounter in the Kuiper Belt, a vast region beyond the orbit of Neptune that contains thousands of ancient, icy objects, said Horanyi. Kuiper Belt objects are thought to contain samples of ancient material formed in the solar system billions of years ago.

Microscopic-sized dust grains hitting the SDC will create unique electrical signals, allowing the CU-Boulder students to infer the mass of each particle, said CU-Boulder doctoral student David James, who has been working on the electronics of the dust detection system on SDC for the past two years. While the spacecraft will be in "sleep mode" for much of the cruise to Pluto, CU-Boulder’s dust detector will remain turned on to catch space dust during the journey, James said.

The SDC team is comprised of CU-Boulder students from electrical and computer engineering, mechanical engineering, computer science, journalism and business who designed and fabricated the instrument under the supervision of LASP faculty and staff. The students will share their findings and mission experiences with students and the public around the world via the Internet and public presentations.

"I never dreamed I would get the chance to actually work on a space mission as an undergraduate student," said Elizabeth Grogan, who began working on the SDC as software engineer while a senior at CU-Boulder. She now works at LASP as a research assistant on the New Horizons effort. "I got much more hands-on experience on this project than I could have ever gotten in a classroom," Grogan said.

The National Academy of Sciences has ranked the exploration of Pluto, its moon, Charon, and the Kuiper Belt among the highest priorities for space exploration, citing their importance in advancing the understanding of the solar system.

"We expect that several generations of CU-Boulder students will be involved in the mission during the next two decades," Horanyi said.

The New Horizons mission is led by the Southwest Research Institute’s Department of Space Studies in Boulder under the direction of Alan Stern. New Horizons was designed and built at Johns Hopkins University’s Applied Physics Laboratory in Laurel, Md., which will operate the spacecraft for NASA. The piano-sized probe will launch on a Lockheed Martin Atlas 5 rocket from Cape Kennedy to begin its10-year journey to Pluto.

The 1,000-pound probe, which will be the fastest spacecraft ever launched, will approach Pluto and Charon as early as summer 2015. In addition to the dust counter, the instrument suite includes two cameras, two imaging spectrometers and two particle spectrometers to gather data on the surfaces, atmospheres and temperatures of Pluto, Charon and the Kuiper Belt objects.

Horanyi said a group of current and former CU-Boulder students who worked on SDC are going to the Florida launch, many paying their own way from around the world. "Many of these students have moved on to other institutions and careers, but they are excited to see this mission finally launch," he said. "If all goes well, we will be having another reunion in 10 years when the spacecraft reaches Pluto."

Mihaly Horanyi | EurekAlert!
Further information:
http://www.colorado.edu/
http://pluto.jhuapl.edu
http://lasp.colorado.edu/programs_missions/present/off_site/sdc.html

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>