Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hubble movies show traffic jam in stellar jets


Astronomers track massive shockwaves in plasma escaping newborn star

Like traffic on a freeway, plasma spewing from the poles of newborn stars moves in clumps that travel at different speeds. When fast-moving particles run into slower material on these cosmic freeways, the resulting "traffic jams" create massive shock waves that travel trillions of miles.

Thanks to highly resolved images from the Hubble Space Telescope, a team of astronomers have created the first moving pictures of one of these cosmic freeways, which are known as stellar jets. The movies allow scientists to trace these stellar jet shock waves for the first time, gleaning important clues about a critical, yet poorly understood process of starbirth. The results appeared in the November issue of Astronomical Journal.

"When it comes to actually showing exactly what’s going on, there’s just nothing like a movie," said study co-author Patrick Hartigan, associate professor of physics and astronomy at Rice University. "You can look at a still image and make up all kinds of stories, but they all go out the window when you see a movie."

Hartigan and researchers from the Cerro Tololo Inter-American Observatory (CTIAO) in Chile, Arizona State University (ASU), the University of Hawaii and the University of Colorado at Boulder, made the movies using images taken in 1994 and 1999 of a newly formed star called HH 47 in the constellation Vela. Because Hubble flies above the Earth’s atmosphere, it can take much clearer images than Earth-based telescopes. As a result, Hartigan and his co-researchers were able to resolve objects in the Hubble images that were 20 times smaller than objects resolved in similar images taken on Earth. This extra resolution, and the five-year gap between Hubble surveys of HH 47, allowed them to make moving pictures of the stellar jet shock waves moving away from the new star.

"Imagine taking a photo at a football game that shows the quarterback throwing the ball at the start of a play," Hartigan said. "There is no way to know what happened in the play without a second photograph at the end of the play that shows a touchdown, incomplete pass, interception, or whatever occurs. If you take a series of photos, with enough resolution to make out the ball, you could determine whether someone ran with the ball or caught a pass, and you could determine the relative position of all of the players to one another at any time during the play.

"Like the time-lapse images of the game, our movies give us the ability to track the movement of individual features within the stellar jet, both relative to stationary objects and relative to other objects that are moving within the jet at a different speed," Hartigan said.

New stars form out of giant clouds of gas and dust. Within these clouds, strong gravitational forces pull material together into a tight ball surrounded by a large spinning disk. The new star forms out of the ball, and any planets that might form do so in the disk. Through processes not well-understood, much of the disk material gradually spirals into the star, and the resulting energy from this process drives stellar jets of plasma that erupt from the star at perpendicular angles to the spinning accretion disk. The material thrown away from the star in the jets acts as a brake on disk, slowing its rotation and allowing more material to fall into the growing star. Scientists know stellar jets play an integral role in star formation, but they have yet to determine the specifics of their role, or how it is carried out.

Jade Boyd | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>