Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Crystal of holes discovered


Physicists at Kiel University discover an unusual state of matter

The existence of an unusual state of matter, a crystal that consists entirely of holes, has been proven at Kiel University. As reported in the latest issue of Physical Review Letters (December 2nd , 2005), an international team led by Professor Michael Bonitz has, for the first time, demonstrated with the help of extensive computer simulations that this exotic phenomenon, the existence of which was hitherto only a subject of speculation, should certainly occur. The physicists have also been able to predict the conditions for its formation.

"We now know that this effect occurs in semiconductors with a certain type of band structure", says Bonitz. "In normal solids, the electrons and holes (which are formed when electrons are excited) are both far extended inside the solid - a consequence of quantum mechanics. Electrons and holes penetrate the material like a liquid". However, when the mass of a hole exceeds a certain critical value - 80 times the mass of an electron - the hole liquid undergoes a spontaneous change to become a crystal. Furthermore, there are strong indications that in semiconductor systems of this kind, a reduction of pressure can result in the formation of Bose condensates of bound electron-hole pairs (so-called excitons). Anticipating the next stage of the research, the physicist explains that "the next exciting problem is to set up an experiment that will confirm our prediction of the crystal of holes". Suitable materials systems for this have already been suggested.

The scientist at the Institute of Theoretical Physics and Astrophysics explains that the crystal of holes is also of great interest for another reason: "We have been able to show that it has many features in common with very different kinds of crystals, such as plasma crystals or ionic crystals". It is especially intriguing that the crystal of holes shows many similarities with some of the most mysterious objects in the universe - white dwarfs and neutron stars. It has been suggested that a crystal of nuclei exists in these exotic, very distant objects. Bonitz hopes that "it may soon be possible to study important properties of these systems in the laboratory by experiments on a crystal of holes".

This extraordinary kind of crystal may also be of interest for materials research, says Bonitz, "because it may possess properties of importance for superconductivity". Whereas superconductivity (a flow of electrical current with no resistance) can only be achieved at present at very low temperatures, some scientists, in particular the 2003 Physics Nobel Prize winner Alexei Abrikosov, expect that systems containing a crystal of holes should become superconducting at significantly higher temperatures. This presents the Kiel scientists and their partners with a challenge, and Bonitz comments that "an important aim of our continuing investigations will be to test these predictions".

In his research, Professor Michael Bonitz is collaborating with a German-Russian team of scientists, which includes Professor Holger Fehske (Greifswald University) and Dr. Vladimir S. Filinov (Institute for High Energy Density, Moscow). The project forms a part of the Transregional Collaborative Research Centre TR 24, on "Fundamentals of Complex Plasmas", which was recently approved by the Deutsche Forschungsgemeinschaft (German Research Foundation), and is based at the universities of Greifswald and Kiel.

The research results haven been selected by the American Physics Society for coverage in its online journal Physical Review Focus, see

Susanne Schuck | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>