Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of a spiral ring around Saturn

29.11.2005


A team of astrophysicists from the CEA (Commissariat à l’Energie Atomique), the Université Paris 7 Denis Diderot and the CNRS in France has discovered that one of Saturn’s rings has a spiral shape and has published its results today in the American journal Science. This unusual astronomical configuration is perhaps the result of a collision with a recently formed small moon. The discovery is a great opportunity for astrophysicists who think that this ring is the only place in our solar system where astronomical bodies are still forming. The observation of this "nursery" will undoubtedly shed light on the processes of planet and moon formation in the solar system.



The rings of Saturn, discovered in 1610 by Galileo, are composed of dust and ice orbiting around the planet. Although they seem to be continuous when viewed from the Earth, these rings are composed of vast numbers of small particles, each with its own independent orbit. They range is size from a centimetre to several metres, with some objects about a kilometre in diameter. The rings have been named, in the order of their discovery from A to G. The F ring is the furthest out of Saturn’s main rings. It is situated 140 000 km from the planet and is composed of a central brilliant ring, called the "core" and of small concentric rings, called "filaments". Using the images from the Cassini probe, the astrophysicists have discovered that in reality the filaments have a unique structure, in the form of a spiral, that twists at least three times around itself. Although several other planets in the solar system have rings (Uranus, Neptune and Jupiter), this spiral ring around Saturn is a new category of rings, with no known equivalent.

How has the spiral been formed? By what mechanism? Astrophysicists think that a collision between the core of the F ring and small moon that is in the process of forming within the ring could be the cause. This small moon, by crossing the ring’s core, disrupts the spatial distribution of the particles of which it is composed. They then spread out in a circle around Saturn and as a result of the orbital dynamics, naturally roll up to form a spiral. This scenario has been confirmed by computer simulations. Several moons, observed by Cassini in the vicinity of the F ring, could be responsible for this collision although we can’t yet say for certain which one. Because of the proximity to the planet and the influence of gravitational forces, the moons that are currently forming are only about 1 to 2 km in diameter. They are then destroyed by the same tidal forces. The ring is therefore a place where small moons are continuously being formed and then destroyed. These observations confirm the calculations of theoretical models that for a long time have predicted the formation of small moons in such an unusual ring.


Astrophysicists think that these small moons are very young, being not more than a few years old, and are formed by the accretion of matter within the ring. As a comparison, the 9 planets in the solar system and their 160 moons were formed 4.5 billion years ago. The F ring of Saturn is probably therefore a sort of modern-day "nursery" for astronomical bodies that will provide astrophysicists with a better understanding of the mechanisms by which the celestial bodies in our solar system were originally formed. In 2009 the satellite Prometheus will collide with the F ring. It is very probable that new rings will then be formed as a result of this collision and these will be monitored directly by astrophysicists by means of the Cassini probe.

Pascal Newton | alfa
Further information:
http://www.cea.fr/gb/index.asp

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>