Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of a spiral ring around Saturn

29.11.2005


A team of astrophysicists from the CEA (Commissariat à l’Energie Atomique), the Université Paris 7 Denis Diderot and the CNRS in France has discovered that one of Saturn’s rings has a spiral shape and has published its results today in the American journal Science. This unusual astronomical configuration is perhaps the result of a collision with a recently formed small moon. The discovery is a great opportunity for astrophysicists who think that this ring is the only place in our solar system where astronomical bodies are still forming. The observation of this "nursery" will undoubtedly shed light on the processes of planet and moon formation in the solar system.



The rings of Saturn, discovered in 1610 by Galileo, are composed of dust and ice orbiting around the planet. Although they seem to be continuous when viewed from the Earth, these rings are composed of vast numbers of small particles, each with its own independent orbit. They range is size from a centimetre to several metres, with some objects about a kilometre in diameter. The rings have been named, in the order of their discovery from A to G. The F ring is the furthest out of Saturn’s main rings. It is situated 140 000 km from the planet and is composed of a central brilliant ring, called the "core" and of small concentric rings, called "filaments". Using the images from the Cassini probe, the astrophysicists have discovered that in reality the filaments have a unique structure, in the form of a spiral, that twists at least three times around itself. Although several other planets in the solar system have rings (Uranus, Neptune and Jupiter), this spiral ring around Saturn is a new category of rings, with no known equivalent.

How has the spiral been formed? By what mechanism? Astrophysicists think that a collision between the core of the F ring and small moon that is in the process of forming within the ring could be the cause. This small moon, by crossing the ring’s core, disrupts the spatial distribution of the particles of which it is composed. They then spread out in a circle around Saturn and as a result of the orbital dynamics, naturally roll up to form a spiral. This scenario has been confirmed by computer simulations. Several moons, observed by Cassini in the vicinity of the F ring, could be responsible for this collision although we can’t yet say for certain which one. Because of the proximity to the planet and the influence of gravitational forces, the moons that are currently forming are only about 1 to 2 km in diameter. They are then destroyed by the same tidal forces. The ring is therefore a place where small moons are continuously being formed and then destroyed. These observations confirm the calculations of theoretical models that for a long time have predicted the formation of small moons in such an unusual ring.


Astrophysicists think that these small moons are very young, being not more than a few years old, and are formed by the accretion of matter within the ring. As a comparison, the 9 planets in the solar system and their 160 moons were formed 4.5 billion years ago. The F ring of Saturn is probably therefore a sort of modern-day "nursery" for astronomical bodies that will provide astrophysicists with a better understanding of the mechanisms by which the celestial bodies in our solar system were originally formed. In 2009 the satellite Prometheus will collide with the F ring. It is very probable that new rings will then be formed as a result of this collision and these will be monitored directly by astrophysicists by means of the Cassini probe.

Pascal Newton | alfa
Further information:
http://www.cea.fr/gb/index.asp

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>