Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Venus mission will hold surprises says U. of Colorado planetary scientist

03.11.2005


Veteran CU-Boulder scientist on camera team

University of Colorado at Boulder planetary scientist Larry Esposito, a member of the European Space Agency’s Venus Express science team, believes the upcoming mission to Earth’s "evil twin" planet should be full of surprises.

While its 875-degree F. surface is hot enough to make rocks glow and its atmosphere is filled with noxious carbon dioxide gases and acid rain, Venus actually is more Earth-like than Mars, said Esposito, a professor in CU-Boulder’s Laboratory for Atmospheric and Space Physics. A member of the Venus Monitoring Camera team for the $260 million now slated for launch from the Baikonur Cosmodrome in Kazakhstan on Nov. 9, Esposito said Venus is a "neglected planet" that undoubtedly harbors a number of astounding discoveries.



One question revolves around what is known as an "unknown ultraviolet absorber" high in the planet’s clouds that blocks sunlight from reaching the surface. "Some scientists believe there is the potential, at least, that life could be found in the clouds of Venus," said Esposito. "There has been speculation that sunlight absorbed by the clouds might be involved in some kind of biological activity."

Esposito is particularly eager to see if volcanoes on Venus are still active. In 1983 he used data from a CU-Boulder instrument that flew on NASA’s Pioneer Venus spacecraft to uncover evidence that a massive volcanic eruption there poured huge amounts of sulfur dioxide into the upper atmosphere. The eruption, which likely occurred in the late 1970s, appears to have been at least 10 times more powerful than any that have occurred on Earth in more than a century, he said.

"The spacecraft will be looking for ’hotspots’ through the clouds in an attempt to make a positive detection of volcanoes," said Esposito, who made the first observations of Venus with the Hubble Space Telescope in 1995. "While the Magellan mission that mapped Venus in the 1990s was not able to find evidence of volcanic activity, it did not close out the question. This will give us another shot."

Since Venus and Earth were virtual twins at birth, scientists are puzzled how planets so similar in size, mass and composition could have evolved such different physical and chemical processes, he said. "The results from missions like this have major implications for our understanding of terrestrial planets as a whole, and for comparable processes occurring on Earth and Mars," said Esposito.

Esposito has been involved in a number of planetary exploration missions at CU-Boulder. He currently is science team leader for the UltraViolet Imaging Spectrograph, a $12.5 million CU-Boulder instrument on the Cassini spacecraft now exploring the rings and moons of Saturn.

He also was an investigator for a CU-Boulder instrument that visited Jupiter and its moons in the 1990s aboard NASA’s Galileo spacecraft, and was an investigator for NASA’s Voyager 2 spacecraft that toted a CU-Boulder instrument on a tour of the solar system’s planets in the 1970s and 1980s.

Esposito was a science team member on two failed Russian missions to Mars -- the 1988 Phobos mission that exploded in space and the Mars 96 mission that crashed in Earth’s ocean. Five of the science instruments on Venus Express are "spares" from the Mars Express and Rosetta comet mission, according to ESA.

In addition to the camera, the Venus Express spacecraft also is carrying two imaging spectrometers, a spectrometer to measure atmospheric constituents, a radio science experiment and a space plasma and atom-detecting instrument. The spacecraft is expected to arrive at Venus in April 2006 and orbit the planet for about 16 months.

The Venus Express mission originally was scheduled to launch Oct. 26, but a thermal-insulation problem discovered in the upper-stage booster rocket caused a two-week delay. The launch window closes on Nov. 24.

Larry Esposito | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Physics and Astronomy:

nachricht New research identifies how 3-D printed metals can be both strong and ductile
11.12.2017 | University of Birmingham

nachricht Three kinds of information from a single X-ray measurement
11.12.2017 | Friedrich-Schiller-Universität Jena

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

Large-scale battery storage system in field trial

11.12.2017 | Power and Electrical Engineering

See, understand and experience the work of the future

11.12.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>