Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NJIT physicist sees terahertz imaging as ultimate defense against terrorism

01.11.2005


John Federici, PhD, professor, department of physics, New Jersey Institute of Technology (NJIT) and other physicists at NJIT recently received a U.S. Patent for a Teraherz imaging system and method. Since 1995, Terahertz imaging has grown in importance as new and sophisticated devices and equipment have empowered scientists to understand its potential.



"I see the Terahertz spectrum as one of the critical technologies for defense against suicide bombers and other terrorist activities," Federici said.

Federici’s research has focused on the potential applications of Terahertz rays for directly detecting and imaging concealed weapons and explosives. Another application is the remote detection of chemical and biological agents in the atmosphere. In November of 2004, Federici and.


"The idea has been to apply different methods of imaging to Terahertz rays," said Federici. His research team has focused in particular on applications of synthetic aperture imaging to the Terahertz range. "The advantage of this particular method is the ability to generate Terahertz images with a large number of pixels using a limited number of Terahertz detectors. This imaging method should also be capable of video-rate imaging, thereby enabling the real-time monitoring of people hiding concealed explosives or other dangers." A typical imaging system would be analogous to a still or video camera designed for this purpose.

Scientists favor Terahertz radiation because it can transmit through most non-metallic and non-polar mediums. When a Terahertz system is used correctly, people can see through concealing barriers such as packaging, corrugated cardboard, walls, clothing, shoes, book bags, pill coatings, etc. in order to probe for concealed or falsified materials.

Once the rays penetrate those materials, they can also characterize what might be hidden –be they explosives, chemical agents or more--based on a spectral fingerprint the rays will sense which can identify the material. Terahertz radiation also poses minimal or no health risk to either the person being scanned or the THz system operator.

Federici and his team recently published "Terahertz imaging and sensing for security applications explosives, weapons and drugs," in Semiconductor Science and Technology (Vol 20, page 266, 2005). The U.S. Department of Homeland Security, Army Research Office and National Science Foundation have provided funding for this research since 2002.

The article focused on three configurations of Terahertz systems, examining when and how best to use the rays. Transmission versus reflective detection, pulsed Terahertz detection systems versus continuous wave systems, and close proximity versus stand-off detection are compared.

"While pulsed Terahertz detection systems are capable of close proximity detection," said Federici, "there are many factors to take into account. For example, distortions to Terahertz pulses introduced by propagation through the atmosphere, favor a continuous wave system for stand-off detection."

Federici has recently garnered praise for his work. He recently received NJIT’s top research honor, the Harlan Perlis Research Award. Next month, Federici will accept an award for his work from the Research & Development Council of New Jersey. The council honors and helps those individuals upholding the legacies of Albert Einstein and Thomas Alva Edison, both of whom lived and worked most of their lives in New Jersey.

Federici’s research interests span discovery of infrared quenched photo-induced superconductivity and localized energy states in nano-materials to online semi-conductor process monitoring to advanced spectroscopic imaging technologies. He has been the lead writer on more than 50 publications in scholarly journals and holds four patents. His most recent patents emphasize Terahertz synthetic aperture imaging.

Sheryl Weinstein | EurekAlert!
Further information:
http://www.njit.edu

More articles from Physics and Astronomy:

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

nachricht Astronomers probe swirling particles in halo of starburst galaxy
28.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>