Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Even ’failed stars’ form planets

26.10.2005


An international team of astronomers shows that even brown dwarfs start to form planets



Thus, the process of building planets is more universal and robust than had previously been assumed (Science Express, October 20, 2005).

Brown dwarfs, like more massive normal stars, are formed when interstellar gas and dust clouds collapse. When this happens, a central, dense area builds up, embedded in a rotating disc made of gas and dust. These circumstellar discs produce infrared radiation according to their temperature.


The collapse of gas and dust clouds ends when the increasing pressure, temperature, and density in the central area causes nuclear fusion to start – that is, the burning of hydrogen into helium. This causes the dense area to become its own star. If its mass is too small, however, for the fusion to take place, a brown dwarf is created instead. It will have no further source of energy, and will slowly radiate the compression temperature created by the collapse.

The team of astronomers investigated six young brown dwarfs from the Chamaeleon star-forming region in the direction of the south celestial pole. The objects are between one and three million years old, and their masses are between 40 and 70 times that of Jupiter. The astonomers used SPITZER to record the detailed spectrum of infrared light, from which they derived information about the size of the radiated particles and their minerological composition.

The data analysis showed that in five of the six cases they looked at, dust particles in the circumstellar disc of the ‛failed stars’ stuck together and made larger clumps of olivine, a material made of silicon and crystalline structures. The discs of young normal stars are already known to contain this material. It is also found in comets – the leftover material from the time when our own planetary system was being built. Apparently, the same growth and crystallisation processes take place in the circumstellar discs that we see in normal stars (including the Sun) at the beginning of planet formation.

Futhermore, there was evidence that the circumstellar discs flatten out in a way that one would also expect given how the dust components develop. Daniel Apai, who is doing reserach at the Steward Observatory in Tuscon, Arizona and is a member of the Life and Planets Astrobiology Center NASA´s Astrobiology Institute, says that ‛Using SPITZER, we can investigate planet formation under all different kinds of conditions. Our observations show that the first steps of planet formation are determined to a lesser extent by details than we previously thought’. Kees Dullemond at the Max Planck Instiute for Astronomy stresses that ‛this result is important also because it narrows down theories about planet formation and thus gives us a deeper insight into the process’.

These observational results show that in the future, in projects to find extrasolar planets – like ESA’s DARWIN mission and NASA’s terrestrial planet finder – it could be worth it to look for planets in the neighborhood of brown dwarfs.

We can look at these spectra when we do a wavelength analysis on the light collected in the telescope, similar to the way a drop of water or a prisma turns sunlight into a rainbow. The bright ‛arches’, which appear at different wavelengths, are the ‛fingerprints’ which allow us to read the chemical features (i.e., it contains silicate), the size, and the physical condition (from amorphous to crystalline).

In the picture, the light green vertical stripes indicate the ‛fingerprints’ of crystals which are made primarily of the minieral olivine, which is green, made of silicate, and appears on earth. It seems the spectra of three of the four brown dwarfs have similar components. In interstellar dust, they are unrecognisable. They are most clearly visible in the spectrum of the Hale-Bopp comet. The bigger the dust particles, the wider the ‛arches’ are in their emission spectrum.

Participants in this project: Drs Daniel Apai and Ilaria Pascucci (Steward Observatory, University of Arizona, Tucson), Drs Jeroen Bouwman, Thomas Henning und Cornelis P Dullemond (Max Planck Institute for Astronomy, Heidelberg), and Dr Antonella Natta (Osservatorio Astrofisico di Arcetri, Florence).

Dr Klaus Jäger | EurekAlert!
Further information:
http://www.mpia.de

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>