Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Even ’failed stars’ form planets

26.10.2005


An international team of astronomers shows that even brown dwarfs start to form planets



Thus, the process of building planets is more universal and robust than had previously been assumed (Science Express, October 20, 2005).

Brown dwarfs, like more massive normal stars, are formed when interstellar gas and dust clouds collapse. When this happens, a central, dense area builds up, embedded in a rotating disc made of gas and dust. These circumstellar discs produce infrared radiation according to their temperature.


The collapse of gas and dust clouds ends when the increasing pressure, temperature, and density in the central area causes nuclear fusion to start – that is, the burning of hydrogen into helium. This causes the dense area to become its own star. If its mass is too small, however, for the fusion to take place, a brown dwarf is created instead. It will have no further source of energy, and will slowly radiate the compression temperature created by the collapse.

The team of astronomers investigated six young brown dwarfs from the Chamaeleon star-forming region in the direction of the south celestial pole. The objects are between one and three million years old, and their masses are between 40 and 70 times that of Jupiter. The astonomers used SPITZER to record the detailed spectrum of infrared light, from which they derived information about the size of the radiated particles and their minerological composition.

The data analysis showed that in five of the six cases they looked at, dust particles in the circumstellar disc of the ‛failed stars’ stuck together and made larger clumps of olivine, a material made of silicon and crystalline structures. The discs of young normal stars are already known to contain this material. It is also found in comets – the leftover material from the time when our own planetary system was being built. Apparently, the same growth and crystallisation processes take place in the circumstellar discs that we see in normal stars (including the Sun) at the beginning of planet formation.

Futhermore, there was evidence that the circumstellar discs flatten out in a way that one would also expect given how the dust components develop. Daniel Apai, who is doing reserach at the Steward Observatory in Tuscon, Arizona and is a member of the Life and Planets Astrobiology Center NASA´s Astrobiology Institute, says that ‛Using SPITZER, we can investigate planet formation under all different kinds of conditions. Our observations show that the first steps of planet formation are determined to a lesser extent by details than we previously thought’. Kees Dullemond at the Max Planck Instiute for Astronomy stresses that ‛this result is important also because it narrows down theories about planet formation and thus gives us a deeper insight into the process’.

These observational results show that in the future, in projects to find extrasolar planets – like ESA’s DARWIN mission and NASA’s terrestrial planet finder – it could be worth it to look for planets in the neighborhood of brown dwarfs.

We can look at these spectra when we do a wavelength analysis on the light collected in the telescope, similar to the way a drop of water or a prisma turns sunlight into a rainbow. The bright ‛arches’, which appear at different wavelengths, are the ‛fingerprints’ which allow us to read the chemical features (i.e., it contains silicate), the size, and the physical condition (from amorphous to crystalline).

In the picture, the light green vertical stripes indicate the ‛fingerprints’ of crystals which are made primarily of the minieral olivine, which is green, made of silicate, and appears on earth. It seems the spectra of three of the four brown dwarfs have similar components. In interstellar dust, they are unrecognisable. They are most clearly visible in the spectrum of the Hale-Bopp comet. The bigger the dust particles, the wider the ‛arches’ are in their emission spectrum.

Participants in this project: Drs Daniel Apai and Ilaria Pascucci (Steward Observatory, University of Arizona, Tucson), Drs Jeroen Bouwman, Thomas Henning und Cornelis P Dullemond (Max Planck Institute for Astronomy, Heidelberg), and Dr Antonella Natta (Osservatorio Astrofisico di Arcetri, Florence).

Dr Klaus Jäger | EurekAlert!
Further information:
http://www.mpia.de

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>