Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Outsmarting light

14.10.2005


A team of scientists headed by Dr. Christoph Lienau of the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI) in Berlin develops and utilizes novel nanoptical techniques for imaging structures that are many times smaller than the wavelength of light. The research is based on a special Scanning Near-Field Optical Microscope (SNOM), patented by MBI, providing extremely high optical resolution and flexible combination with different spectroscopic techniques. A microscope based on this patent was now built for the Research Centre Jülich (Forschungszentrum Jülich), where scientists will use it to examine optical absorption in thin nanostructured layers of silicon. These studies at the Jülich facility are aimed at increasing the efficiency of silicon-based thin-film solar cells.



“We need to know the local optical properties of the silicon structures”, says Jülich scientist Dr. Reinhard Carius. It is not sufficient to only know the morphology of the surface. Therefore, neither atomic-force microscopes nor other electron microscopes can help, because these yield information on the surface structure but only limited knowledge about their electro-magnetic properties. “The SNOM built by the colleagues at MBI allows us to investigate how light propagates in the silicon thin films”, says Carius. What’s more, the near-field microscope is highly versatile. Carius adds: “I know of no other place to get such a machine, that is why we asked the MBI to build a duplicate for us.”

So, what is it that makes scanning near-field optical microscopy so special? “We outsmart light with it”, says Dr. Christoph Lienau of the Max Born Institute. He and his colleagues have constructed the SNOM and got it patented. Lienau explains: “Normally, with visible light, one cannot image structures that are smaller than its wavelenght.” However, light can be regarded not only as a wave phenomenon but as a stream of particles as well. And these particles, called photons, go through seemingly impenetrable barriers. In quantum physics this is known as a tunneling process. “Photons are tunneling through tiny holes smaller than the wavelength of light”, explains Lienau, “and we count the photons and measure their properties.”


The tiny aperture through which the photons are tunneling is located at the very tip of a thin, metal-coated optical fiber. The scientists create these apertures in a controlled way by slightly moving the tip of the fibre into the sample that is to be examined. Then they send light through the fibre and measure how much light is emitted through the hole. Thus, they determine the size of the hole – in the current set-up of the microscope, the hole measures less than 50 nanometers (nm). 1 nm equals the billionth part of a meter. Depending on the colour, visible light has a wavelength of 400 to 800 nm. “We achieve a spatial resolution of 50 nm with our optical near-field microscope”, says Lienau, “that is up to fifteen times smaller than the wavelength of light.”

However, the images generated by SNOM do not directly resemble images obtained by conventional optical microscopy or photography. This is due to the fact that the SNOM-technique belongs to the family of scanning probe methods. In a way, it is similar to Scanning Tunneling Microscopy (STM) or Atomic Force Microscopy (AFM). The tip of the optical fiber scans the sample point by point. If you compare the different methods, you could say that STM or AFM yield information in the same way as a blind person gets information by tactile sensitivity. Touching an object tells you about the surface geometry, and about properties like temperature or maybe electric charge, but it gives no information on colour or transparency. The SNOM-technique overcomes this problem.

The machine built by MBI works in the temperature range between 10 and 300 Kelvin. That equals minus 260 degrees Celsius up to room temperature. Only the sample is cooled by liquid helium. The sensitive scanning module and the tip, however, are located in a vacuum chamber at room temperature, greatly increasing the ease of operation.

The Scanning Near-Field Optical Microscope is roughly the size of a washing machine. It is easily integrable and is easily integrable into convential optical setups, providing, e.g., spectral and/or temporal resultion. Before receiving the order from Jülich, the MBI scientists already built two similar SNOMs for other research groups. The scientists tested the machine in advance and will deliver it to Jülich on October 17. The tests ended highly successful, says Dr. Lienau. Adds Dr. Reinhard Carius: „My colleagues and I at the Research Centre in Jülich are very pleased about the excellent collaboration with the Max Born Institute. We are glad that we have found such reliable partners.”

Dr. Christoph Lienau | alfa
Further information:
http://www.mbi-berlin.de

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>