Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Outsmarting light

14.10.2005


A team of scientists headed by Dr. Christoph Lienau of the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI) in Berlin develops and utilizes novel nanoptical techniques for imaging structures that are many times smaller than the wavelength of light. The research is based on a special Scanning Near-Field Optical Microscope (SNOM), patented by MBI, providing extremely high optical resolution and flexible combination with different spectroscopic techniques. A microscope based on this patent was now built for the Research Centre Jülich (Forschungszentrum Jülich), where scientists will use it to examine optical absorption in thin nanostructured layers of silicon. These studies at the Jülich facility are aimed at increasing the efficiency of silicon-based thin-film solar cells.



“We need to know the local optical properties of the silicon structures”, says Jülich scientist Dr. Reinhard Carius. It is not sufficient to only know the morphology of the surface. Therefore, neither atomic-force microscopes nor other electron microscopes can help, because these yield information on the surface structure but only limited knowledge about their electro-magnetic properties. “The SNOM built by the colleagues at MBI allows us to investigate how light propagates in the silicon thin films”, says Carius. What’s more, the near-field microscope is highly versatile. Carius adds: “I know of no other place to get such a machine, that is why we asked the MBI to build a duplicate for us.”

So, what is it that makes scanning near-field optical microscopy so special? “We outsmart light with it”, says Dr. Christoph Lienau of the Max Born Institute. He and his colleagues have constructed the SNOM and got it patented. Lienau explains: “Normally, with visible light, one cannot image structures that are smaller than its wavelenght.” However, light can be regarded not only as a wave phenomenon but as a stream of particles as well. And these particles, called photons, go through seemingly impenetrable barriers. In quantum physics this is known as a tunneling process. “Photons are tunneling through tiny holes smaller than the wavelength of light”, explains Lienau, “and we count the photons and measure their properties.”


The tiny aperture through which the photons are tunneling is located at the very tip of a thin, metal-coated optical fiber. The scientists create these apertures in a controlled way by slightly moving the tip of the fibre into the sample that is to be examined. Then they send light through the fibre and measure how much light is emitted through the hole. Thus, they determine the size of the hole – in the current set-up of the microscope, the hole measures less than 50 nanometers (nm). 1 nm equals the billionth part of a meter. Depending on the colour, visible light has a wavelength of 400 to 800 nm. “We achieve a spatial resolution of 50 nm with our optical near-field microscope”, says Lienau, “that is up to fifteen times smaller than the wavelength of light.”

However, the images generated by SNOM do not directly resemble images obtained by conventional optical microscopy or photography. This is due to the fact that the SNOM-technique belongs to the family of scanning probe methods. In a way, it is similar to Scanning Tunneling Microscopy (STM) or Atomic Force Microscopy (AFM). The tip of the optical fiber scans the sample point by point. If you compare the different methods, you could say that STM or AFM yield information in the same way as a blind person gets information by tactile sensitivity. Touching an object tells you about the surface geometry, and about properties like temperature or maybe electric charge, but it gives no information on colour or transparency. The SNOM-technique overcomes this problem.

The machine built by MBI works in the temperature range between 10 and 300 Kelvin. That equals minus 260 degrees Celsius up to room temperature. Only the sample is cooled by liquid helium. The sensitive scanning module and the tip, however, are located in a vacuum chamber at room temperature, greatly increasing the ease of operation.

The Scanning Near-Field Optical Microscope is roughly the size of a washing machine. It is easily integrable and is easily integrable into convential optical setups, providing, e.g., spectral and/or temporal resultion. Before receiving the order from Jülich, the MBI scientists already built two similar SNOMs for other research groups. The scientists tested the machine in advance and will deliver it to Jülich on October 17. The tests ended highly successful, says Dr. Lienau. Adds Dr. Reinhard Carius: „My colleagues and I at the Research Centre in Jülich are very pleased about the excellent collaboration with the Max Born Institute. We are glad that we have found such reliable partners.”

Dr. Christoph Lienau | alfa
Further information:
http://www.mbi-berlin.de

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Shrews shrink in winter and regrow in spring

24.10.2017 | Life Sciences

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>