Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brownian motion under the microscope

11.10.2005


High precision single-particle measurements validate a corrected form of the equation describing Brownian motion



An international group of researchers from the EPFL (Ecole Polytechnique Fédérale de Lausanne), the University of Texas at Austin and the European Molecular Biology Laboratory in Heidelberg, Germany have demonstrated that Brownian motion of a single particle behaves differently than Einstein postulated one century ago.

Their results, to be published online October 11 in Physical Review Letters, provide direct physical evidence that validates a corrected form of the standard theory describing Brownian motion. Their experiment tracked the Brownian fluctuations of a single particle at microsecond time scales and nanometer length scales, marking the first time that single micron-sized particles suspended in fluid have been measured with such high precision.


A hundred years ago, Einstein first quantified Brownian motion, showing that the irregular movement of particles suspended in a fluid was caused by the random thermal agitation of the molecules in the surrounding fluid.

Scientists have subsequently discovered that many fundamental processes in living cells are driven by Brownian motion. And because Brownian particles move randomly throughout their surroundings, they have great potential for use as probes at the nanoscale. Researchers can get detailed information about a particle’s environment by analyzing its Brownian trajectory.

"It is hard to overemphasize the importance of thoroughly understanding Brownian motion as we continue to delve ever deeper into the world of the infinitesimally small, " comments EPFL’s lead researcher Sylvia Jeney.

Researchers have known for some time that when a particle is much larger than the surrounding fluid molecules, it will not experience the completely random motion that Einstein predicted. As the particle gains momentum from colliding with surrounding particles, it will displace fluid in its immediate vicinity. This will alter the flow field, which will then act back on the particle due to fluid inertia. At this time scale the particle’s own inertia will also come into play. But no direct experimental evidence at the single particle level was available to support and quantify these effects.

Using a technique called Photonic Force Microscopy, the research team has been able to provide this evidence. They constructed an optical trap for a single micron-sized particle and recorded its Brownian fluctuations at the microsecond time scale. "The new microscope allows us to measure the particle’s position with extreme precision," notes University of Texas professor Ernst-Ludwig Florin, a member of the research group.

At this high resolution, they found that the time it takes for the particle to make the transition from ballistic motion to diffusive motion was longer than the classical theory predicted.

"This work ratchets our understanding of the phenomenon up a step, providing essential physical evidence for dynamical effects occurring at short time scales," says Jeney.

Their results validate the corrected form of the equation describing Brownian motion, and underline the fact that deviations from the standard theory become increasingly important at very small time scales.

As researchers develop sophisticated, high resolution experimentation techniques for probing the nanoworld, these dynamical details of Brownian motion will be increasingly important.

Dr. Jeney was awarded the SSOM prize at the August 2005 meeting of the Swiss Society for Optics and Microscopy for her work in photonic force microscopy, the technique used in this research.

Mary Parlange | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>