Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brownian motion under the microscope

11.10.2005


High precision single-particle measurements validate a corrected form of the equation describing Brownian motion



An international group of researchers from the EPFL (Ecole Polytechnique Fédérale de Lausanne), the University of Texas at Austin and the European Molecular Biology Laboratory in Heidelberg, Germany have demonstrated that Brownian motion of a single particle behaves differently than Einstein postulated one century ago.

Their results, to be published online October 11 in Physical Review Letters, provide direct physical evidence that validates a corrected form of the standard theory describing Brownian motion. Their experiment tracked the Brownian fluctuations of a single particle at microsecond time scales and nanometer length scales, marking the first time that single micron-sized particles suspended in fluid have been measured with such high precision.


A hundred years ago, Einstein first quantified Brownian motion, showing that the irregular movement of particles suspended in a fluid was caused by the random thermal agitation of the molecules in the surrounding fluid.

Scientists have subsequently discovered that many fundamental processes in living cells are driven by Brownian motion. And because Brownian particles move randomly throughout their surroundings, they have great potential for use as probes at the nanoscale. Researchers can get detailed information about a particle’s environment by analyzing its Brownian trajectory.

"It is hard to overemphasize the importance of thoroughly understanding Brownian motion as we continue to delve ever deeper into the world of the infinitesimally small, " comments EPFL’s lead researcher Sylvia Jeney.

Researchers have known for some time that when a particle is much larger than the surrounding fluid molecules, it will not experience the completely random motion that Einstein predicted. As the particle gains momentum from colliding with surrounding particles, it will displace fluid in its immediate vicinity. This will alter the flow field, which will then act back on the particle due to fluid inertia. At this time scale the particle’s own inertia will also come into play. But no direct experimental evidence at the single particle level was available to support and quantify these effects.

Using a technique called Photonic Force Microscopy, the research team has been able to provide this evidence. They constructed an optical trap for a single micron-sized particle and recorded its Brownian fluctuations at the microsecond time scale. "The new microscope allows us to measure the particle’s position with extreme precision," notes University of Texas professor Ernst-Ludwig Florin, a member of the research group.

At this high resolution, they found that the time it takes for the particle to make the transition from ballistic motion to diffusive motion was longer than the classical theory predicted.

"This work ratchets our understanding of the phenomenon up a step, providing essential physical evidence for dynamical effects occurring at short time scales," says Jeney.

Their results validate the corrected form of the equation describing Brownian motion, and underline the fact that deviations from the standard theory become increasingly important at very small time scales.

As researchers develop sophisticated, high resolution experimentation techniques for probing the nanoworld, these dynamical details of Brownian motion will be increasingly important.

Dr. Jeney was awarded the SSOM prize at the August 2005 meeting of the Swiss Society for Optics and Microscopy for her work in photonic force microscopy, the technique used in this research.

Mary Parlange | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Physics and Astronomy:

nachricht Breaking the optical bandwidth record of stable pulsed lasers
24.01.2017 | Institut national de la recherche scientifique - INRS

nachricht European XFEL prepares for user operation: Researchers can hand in first proposals for experiments
24.01.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>