Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brownian motion under the microscope

11.10.2005


High precision single-particle measurements validate a corrected form of the equation describing Brownian motion



An international group of researchers from the EPFL (Ecole Polytechnique Fédérale de Lausanne), the University of Texas at Austin and the European Molecular Biology Laboratory in Heidelberg, Germany have demonstrated that Brownian motion of a single particle behaves differently than Einstein postulated one century ago.

Their results, to be published online October 11 in Physical Review Letters, provide direct physical evidence that validates a corrected form of the standard theory describing Brownian motion. Their experiment tracked the Brownian fluctuations of a single particle at microsecond time scales and nanometer length scales, marking the first time that single micron-sized particles suspended in fluid have been measured with such high precision.


A hundred years ago, Einstein first quantified Brownian motion, showing that the irregular movement of particles suspended in a fluid was caused by the random thermal agitation of the molecules in the surrounding fluid.

Scientists have subsequently discovered that many fundamental processes in living cells are driven by Brownian motion. And because Brownian particles move randomly throughout their surroundings, they have great potential for use as probes at the nanoscale. Researchers can get detailed information about a particle’s environment by analyzing its Brownian trajectory.

"It is hard to overemphasize the importance of thoroughly understanding Brownian motion as we continue to delve ever deeper into the world of the infinitesimally small, " comments EPFL’s lead researcher Sylvia Jeney.

Researchers have known for some time that when a particle is much larger than the surrounding fluid molecules, it will not experience the completely random motion that Einstein predicted. As the particle gains momentum from colliding with surrounding particles, it will displace fluid in its immediate vicinity. This will alter the flow field, which will then act back on the particle due to fluid inertia. At this time scale the particle’s own inertia will also come into play. But no direct experimental evidence at the single particle level was available to support and quantify these effects.

Using a technique called Photonic Force Microscopy, the research team has been able to provide this evidence. They constructed an optical trap for a single micron-sized particle and recorded its Brownian fluctuations at the microsecond time scale. "The new microscope allows us to measure the particle’s position with extreme precision," notes University of Texas professor Ernst-Ludwig Florin, a member of the research group.

At this high resolution, they found that the time it takes for the particle to make the transition from ballistic motion to diffusive motion was longer than the classical theory predicted.

"This work ratchets our understanding of the phenomenon up a step, providing essential physical evidence for dynamical effects occurring at short time scales," says Jeney.

Their results validate the corrected form of the equation describing Brownian motion, and underline the fact that deviations from the standard theory become increasingly important at very small time scales.

As researchers develop sophisticated, high resolution experimentation techniques for probing the nanoworld, these dynamical details of Brownian motion will be increasingly important.

Dr. Jeney was awarded the SSOM prize at the August 2005 meeting of the Swiss Society for Optics and Microscopy for her work in photonic force microscopy, the technique used in this research.

Mary Parlange | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>