Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Big baby’ galaxy found in newborn Universe

28.09.2005


The NASA/ESA Hubble Space Telescope and NASA’s Spitzer Space Telescope have teamed up to ’weigh’ the stars in distant galaxies. One of these galaxies is not only one of the most distant ever seen, but it appears to be unusually massive and mature for its place in the young Universe.



This has surprised astronomers because the earliest galaxies in the Universe are commonly thought to have been much smaller agglomerations of stars that gradually merged together later to build the large majestic galaxies like our Milky Way.

"This galaxy appears to have ’bulked up’ amazingly quickly, within a few hundred million years after the Big Bang," said Bahram Mobasher of the European Space Agency and the Space Telescope Science Institute, a member of the team that discovered the galaxy.


"It made about eight times more mass in terms of stars than are found in our own Milky Way today, and then, just as suddenly, it stopped forming new stars. It appears to have grown old prematurely."

The galaxy, HUDF-JD2, was pinpointed among approximately 10 000 others in a small patch of sky called the Hubble Ultra Deep Field (HUDF). Thanks to the Hubble Space Telescope, this area is captured in the deepest images of the Universe ever made by mankind at optical and near-infrared wavelengths.

The galaxy was detected using Hubble’s Near Infrared Camera and Multi-Object Spectrometer (NICMOS), but at near-infrared wavelengths it is very faint and red.

It is also within the deepest survey from the Spitzer Space Telescope, the Great Observatories Origins Deep Survey (or GOODS). The galaxy is believed to be about as far away as the most distant galaxies and quasars now known. The light reaching us today began its journey when the Universe was only about 800 million years old.

Scientists studying the HUDF found this galaxy in Hubble’s infrared images and expected it to be a very young ’baby’ galaxy, similar to others known at comparable distances. Instead, they found a ’teenager’, much bigger than other galaxies known from this early cosmic era, and already very mature.

Hubble’s Advanced Camera for Surveys (ACS) does not see the galaxy at all, despite the fact that the HUDF is the deepest image ever taken in optical light. This indicates that the galaxy’s blue light has been absorbed by travelling for millions of light-years through intervening hydrogen gas.

However, the big surprise was how much brighter the galaxy is in images from Spitzer’s Infrared Array Camera (IRAC), which easily detects it at wavelengths as much as 15 times longer than those seen by the Hubble.

Spitzer’s IRAC is sensitive to the light from older, redder stars, which should make up most of the mass in a galaxy, and the brightness of the galaxy suggests that it is very massive indeed.

Previous observations have revealed evidence for mature stars in more ordinary, less massive galaxies at similar distances. Other joint Spitzer and Hubble analyses identify more galaxies nearly as massive as the Milky Way, seen when the Universe was less than one thousand million years old.

The new observations by Mobasher and his colleagues dramatically extend this notion of surprisingly mature ‘baby galaxies’ to an object which is perhaps ten times more massive, and seems to have formed its stars even earlier in the history of the Universe.

Lars Lindberg Christensen | alfa
Further information:
http://www.esa.int/esaSC/SEMP8T4Y3EE_index_0.html

More articles from Physics and Astronomy:

nachricht Taking a spin on plasma space tornadoes with NASA observations
20.11.2017 | NASA/Goddard Space Flight Center

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>