Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Big baby’ galaxy found in newborn Universe

28.09.2005


The NASA/ESA Hubble Space Telescope and NASA’s Spitzer Space Telescope have teamed up to ’weigh’ the stars in distant galaxies. One of these galaxies is not only one of the most distant ever seen, but it appears to be unusually massive and mature for its place in the young Universe.



This has surprised astronomers because the earliest galaxies in the Universe are commonly thought to have been much smaller agglomerations of stars that gradually merged together later to build the large majestic galaxies like our Milky Way.

"This galaxy appears to have ’bulked up’ amazingly quickly, within a few hundred million years after the Big Bang," said Bahram Mobasher of the European Space Agency and the Space Telescope Science Institute, a member of the team that discovered the galaxy.


"It made about eight times more mass in terms of stars than are found in our own Milky Way today, and then, just as suddenly, it stopped forming new stars. It appears to have grown old prematurely."

The galaxy, HUDF-JD2, was pinpointed among approximately 10 000 others in a small patch of sky called the Hubble Ultra Deep Field (HUDF). Thanks to the Hubble Space Telescope, this area is captured in the deepest images of the Universe ever made by mankind at optical and near-infrared wavelengths.

The galaxy was detected using Hubble’s Near Infrared Camera and Multi-Object Spectrometer (NICMOS), but at near-infrared wavelengths it is very faint and red.

It is also within the deepest survey from the Spitzer Space Telescope, the Great Observatories Origins Deep Survey (or GOODS). The galaxy is believed to be about as far away as the most distant galaxies and quasars now known. The light reaching us today began its journey when the Universe was only about 800 million years old.

Scientists studying the HUDF found this galaxy in Hubble’s infrared images and expected it to be a very young ’baby’ galaxy, similar to others known at comparable distances. Instead, they found a ’teenager’, much bigger than other galaxies known from this early cosmic era, and already very mature.

Hubble’s Advanced Camera for Surveys (ACS) does not see the galaxy at all, despite the fact that the HUDF is the deepest image ever taken in optical light. This indicates that the galaxy’s blue light has been absorbed by travelling for millions of light-years through intervening hydrogen gas.

However, the big surprise was how much brighter the galaxy is in images from Spitzer’s Infrared Array Camera (IRAC), which easily detects it at wavelengths as much as 15 times longer than those seen by the Hubble.

Spitzer’s IRAC is sensitive to the light from older, redder stars, which should make up most of the mass in a galaxy, and the brightness of the galaxy suggests that it is very massive indeed.

Previous observations have revealed evidence for mature stars in more ordinary, less massive galaxies at similar distances. Other joint Spitzer and Hubble analyses identify more galaxies nearly as massive as the Milky Way, seen when the Universe was less than one thousand million years old.

The new observations by Mobasher and his colleagues dramatically extend this notion of surprisingly mature ‘baby galaxies’ to an object which is perhaps ten times more massive, and seems to have formed its stars even earlier in the history of the Universe.

Lars Lindberg Christensen | alfa
Further information:
http://www.esa.int/esaSC/SEMP8T4Y3EE_index_0.html

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>