Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble finds mysterious disk of blue stars around a black hole

21.09.2005


Astronomers using the NASA/ESA Hubble Space Telescope have identified the source of a mysterious blue light surrounding a supermassive black hole in our neighbouring Andromeda Galaxy (M31). Though the light has puzzled astronomers for more than a decade, the new discovery makes the story even more mysterious.


The images and illustration reveal that the Andromeda Galaxy’s (M31’s) core is composed of a ring of old, red stars and a newly discovered disk of young, blue stars. The disk is trapped within a supermassive black hole’s gravitational field. The mass of Andromeda’s monster black hole is 140 million times greater than that of our Sun.

The illustration at bottom, right shows the structure of Andromeda’s unusual core and is based on Hubble images of the region. The disk of blue stars is nested inside the larger ring of red stars. The tiny black dot within the blue disk is the monster black hole.

Astronomers deduced the structure of Andromeda’s core from Hubble images taken over the past decade. The image at upper, right, taken with the Wide Field and Planetary Camera 2, shows that the galaxy appears to have two cores. Normal galaxies only have one core. Astronomers now believe that Andromeda has one core. The two bright blobs are actually the ring of red stars and the disk of blue stars. In fact, the bright blob on the right has a bluish cast.

The image at left is a view of the entire Andromeda Galaxy. The active core is in the center of the galaxy. Andromeda is 2.5 million light-years from Earth.

Credit: Photo Credit for image at left: ©2002, R. Gendler, Photo by Robert Gendler. Credits for image at upper, right: NASA, ESA and T. Lauer (NOAO/AURA/NSF). Credits for illustration at lower, right: NASA, ESA and A. Feild (STScI).



The blue light is coming from a disk of hot, young stars. These stars are whipping around the black hole in much the same way as planets in our solar system are revolving around the Sun. Astronomers are perplexed about how the pancake-shaped disk of stars could form so close to a giant black hole. In such a hostile environment, the black hole’s tidal forces should tear matter apart, making it difficult for gas and dust to collapse and form stars. The observations, astronomers say, may provide clues to the activities in the cores of more distant galaxies.

By finding the disk of stars, astronomers also have collected what they say is ironclad evidence for the existence of the monster black hole. The evidence has helped astronomers rule out all alternative theories for the dark mass in the Andromeda Galaxy’s core, which scientists have long suspected was a black hole.


"Seeing these stars is like watching a magician pulling a rabbit out of a hat. You know it happened but you don’t know how it happened," said Tod Lauer of the National Optical Astronomy Observatory in Tucson, Arizona. He and a team of astronomers, led by Ralf Bender of the Max Planck Institute for Extraterrestrial Physics in Garching, Germany, and John Kormendy of the University of Texas in Austin, made the Hubble observations. The team’s results will be published in the Sept. 20, 2005 issue of the Astrophysical Journal.

Hubble Probes Strange Blue Light

Astronomer Ivan King of the University of Washington and colleagues first spotted the strange blue light in 1995 with the Hubble Space Telescope. He thought the light might have come from a single, bright blue star or perhaps from a more exotic energetic process. Three years later, Lauer and Sandra Faber of the University of California at Santa Cruz used Hubble again to study the blue light. Their observations indicated that the blue light was a cluster of blue stars.

Now, new spectroscopic observations by Hubble’s Space Telescope Imaging Spectrograph (STIS) reveal that the blue light consists of more than 400 stars that formed in a burst of activity about 200 million years ago. The stars are tightly packed in a disk that is only a light-year across. The disk is nested inside an elliptical ring of older, cooler, redder stars, which was seen in previous Hubble observations.

The astronomers also used STIS to measure the velocities of those stars. They obtained the stars’ speeds by calculating how much their light waves are stretched and compressed as they travel around the black hole. Under the black hole’s gravitational grip, the stars are travelling very fast: 3.6 million kilometres an hour (1,000 kilometres a second). They are moving so fast that it would take them 40 seconds to circle the Earth and six minutes to arrive at the Moon. The fastest stars complete an orbit in 100 years. Andromeda’s active core probably made similar disks of stars in the past and may continue to make them.

"The blue stars in the disk are so short-lived that it is unlikely in the long 12-billion-year history of Andromeda that such a short-lived disk would appear now," Lauer said. "That’s why we think that the mechanism that formed this disk of stars probably formed other stellar disks in the past and will trigger them again in the future. We still don’t know, however, how such a disk could form in the first place. It still remains an enigma."

The astronomers credit Hubble’s superb vision for finding the disk.
"Only Hubble has the resolution in blue light to observe this disk," said team member Richard Green of the National Optical Astronomy Observatory in Tucson. "It is so small and so distinct from the surrounding red stars that we were able to use it to probe into the very dynamical heart of Andromeda. These observations were taken by the members of our team that built STIS. We designed its visible channel specifically to seize such an opportunity - to measure starlight closer to a black hole than in any other galaxy outside our own."


Solid Evidence for a Monster Black Hole

In addition to the discovery of the disk of stars, the astronomers used this uniquely close look at Andromeda to prove unambiguously that the galaxy hosts a central black hole. In 1988, in independent ground-based studies, John Kormendy and the team of Alan Dressler and Douglas Richstone discovered a central dark object in Andromeda that they believed was a supermassive black hole. This was the first strong case for what are now 40 detections of black holes, most of them made by Hubble. Those observations, however, did not definitively rule out other, very exotic, and far less likely, alternatives.

"There are compelling reasons to believe that these are supermassive black holes," Kormendy said. "But extreme claims require extraordinarily strong evidence. We have to be sure that these are black holes and not dark clusters of dead stars."

The STIS observations of Andromeda are so precise that astronomers have eliminated all other possibilities for what the central, dark object could be. They also calculated that the black hole’s mass is 140 million Suns, which is three times more massive than once thought.

So far, dark clusters have definitively been ruled out in only two galaxies, NGC 4258 and our galaxy, the Milky Way. "These two galaxies give us unambiguous proof that black holes exist," Kormendy added. "But both are special cases - NGC 4258 contains a disk of water masers that we observe with radio telescopes, and our galactic center is so close that we can follow individual stellar orbits. Andromeda is the first galaxy in which we can exclude all exotic alternatives to a black hole using Hubble and using the same techniques by which we find almost all supermassive black holes."

"Studying black holes always was a primary mission of Hubble," Kormendy said. "Nailing the black hole in Andromeda is without a doubt an important part of its legacy. It makes us much more confidant that the other central dark objects detected in galaxies are black holes, too."

"Now that we have proven that the black hole is at the centre of the disk of blue stars, the formation of these stars becomes hard to understand," Bender added. "Gas that might form stars must spin around the black hole so quickly - and so much more quickly near the black hole than farther out - that star formation looks almost impossible. But the stars are there."

A Galaxy’s Active Core

The black hole and the disk of stars are not the only pieces of architecture in Andromeda’s core. A team led by Lauer and Faber used Hubble in 1993 to discover that the galaxy appears to have a double cluster of stars at its centre. This finding was a surprise, because two clusters should merge into one in only a few hundred thousand years. Scott Tremaine of Princeton University solved this problem by suggesting that the "double nucleus" was actually a ring of old, red stars. The ring looked like two star clusters because astronomers were only seeing the stars on the opposite ends of the ring. The ring is about five light-years from the black hole and its surrounding disk of blue stars. The disk and the ring are tilted at the same angle as viewed from Earth, suggesting that they may be related.

Although astronomers are surprised to find a blue disk of stars swirling around a supermassive black hole, they also say the puzzling architecture may not be that unusual.

"The dynamics within the core of this neighbouring galaxy may be more common than we think," Lauer explained. "Our own Milky Way apparently has even younger stars close to its own black hole. It seems unlikely that only the closest two big galaxies should have this odd activity. So this behaviour may not be the exception but the rule. And we have found other galaxies that have a double nucleus."

Lars Christensen | alfa
Further information:
http://www.spacetelescope.org/news/html/heic0512.html

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>