Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers find clue to start of universe


Photo / Alan Rogers, Haystack Observatory - Close-up view of the crossed dipole elements of the array used to detect deuterium at radio wavelengths at MIT’s Haystack Observatory in Westford

If you want to hear a little bit of the Big Bang, you’re going to have to turn down your stereo.

That’s what neighbors of MIT’s Haystack Observatory found out. They were asked to make a little accommodation for science, and now the results are in: Scientists at Haystack have made the first radio detection of deuterium, an atom that is key to understanding the beginning of the universe. The findings are being reported in an article in the Sept. 1 issue of Astrophysical Journal Letters.

The team of scientists and engineers, led by Alan E.E. Rogers, made the detection using a radio telescope array designed and built at the MIT research facility in Westford, Mass. Rogers is currently a senior research scientist and associate director of the Haystack Observatory.

After gathering data for almost one year, a solid detection was obtained on May 30.

The detection of deuterium is of interest because the amount of deuterium can be related to the amount of dark matter in the universe, but accurate measurements have been elusive. Because of the way deuterium was created in the Big Bang, an accurate measurement of deuterium would allow scientists to set constraints on models of the Big Bang.

Also, an accurate measurement of deuterium would be an indicator of the density of cosmic baryons, and that density of baryons would indicate whether ordinary matter is dark and found in regions such as black holes, gas clouds or brown dwarfs, or is luminous and can be found in stars. This information helps scientists who are trying to understand the very beginning of our universe.

Until now the deuterium atom has been extremely difficult to detect with instruments on Earth. Emission from the deuterium atom is weak since it is not very abundant in space-there is approximately one deuterium atom for every 100,000 hydrogen atoms, thus the distribution of the deuterium atom is diffuse. Also, at optical wavelengths the hydrogen line is very close to the deuterium line, which makes it subject to confusion with hydrogen; but at radio wavelengths, deuterium is well separated from hydrogen and measurements can provide more consistent results.

In addition, our modern lifestyle, filled with gadgets that use radio waves, presented quite a challenge to the team trying to detect the weak deuterium radio signal. Radio frequency interference bombarded the site from cell phones, power lines, pagers, fluorescent lights, TV, and in one case from a telephone equipment cabinet where the doors had been left off. To locate the interference, a circle of yagi antennas was used to indicate the direction of spurious signals, and a systematic search for the RFI sources began.

At times, Rogers asked for help from Haystack’s neighbors, and in several instances replaced a certain brand of answering machine that was sending out a radio signal with one that did not interfere with the experiment. The interference caused by one person’s stereo system was solved by having a part on the sound card replaced by the factory.

The other members of the team working with Rogers are Kevin Dudevoir, Joe Carter, Brian Fanous and Eric Kratzenberg (all of Haystack Observatory) and Tom Bania of Boston University.

The Deuterium Array at Haystack is a soccer-field size installation conceived and built at the Haystack facility with support from the National Science Foundation, MIT and TruePosition Inc.

Madeleine Needles | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>