Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Nanospheres’ that block pain of sensitive teeth

02.09.2005


Nanospheres could help dentists fill the tiny holes in our teeth that make them incredibly sensitive, and that cause severe pain for millions of adults and children worldwide.



Preliminary research presented today at the Institute of Physics conference EMAG-NANO 2005 shows that creating tiny spheres of a ceramic material called hydroxyapatite could be a long term solution or cure for sensitive teeth.

Sensitive teeth or ’dental hypersensitivity’ is a condition that arises when the dentine of the tooth is exposed. The dentine is made up of thousands of tiny fluid-filled channels which radiate outwards from the nerve endings at the centre of the tooth. Heat, some chemicals, and physical contact can cause the fluid in these channels to move – in or out – triggering the nerve endings and causing sharp pain.


If these channels (or ’tubules’) are fully or partially blocked, the flow can be reduced and the pain stopped or significantly reduced. Currently, the only way to treat this condition is through good dental hygiene – using special toothpastes and fluorine mouthwashes which encourage re-mineralization of the dentine coating.

Jonathan Earl, David Wood and Steve Milne from the Institute of Materials Research at the University of Leeds have found that the most successful particle shape for filling these channels is a ’nanosphere’ and are now trying to synthesize nanospheres of hydroxyapatite. Hydroxyapatite is a ceramic material which is highly compatible with teeth and bone and so is widely used by medics for bone grafts or dental coatings (because it binds strongly with the bone material).

Earl and his colleagues grew hydroxyapatite at various pH levels to vary the size of the particles it is made up of. At normal pH, it is composed of long rod-like structures but at high pH levels the particles of hydroxyapatite become smaller and more rounded, better for fitting inside the tiny channels in teeth.

To see whether nanospheres would be successful at filling the channels they used commercially available silica nanospheres of around 40nm in diameter.

Earl said: "We found these tiny spheres are really good at filling the channels in teeth, packing inside them quite evenly and going down the holes to a good depth. They’d be the perfect shape of particle for filling these channels and reducing or preventing the pain caused by sensitive teeth".

The next stage of their research will be to work out how to synthesize nanospheres of hydroyapatite or a combination of hydroxyapatite and fluorine which would fill the holes and encourage re-mineralization at the same time and so be an incredibly powerful repair tool for dentists.

David Reid | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>