Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists describe a new mechanism for metallic magnetism

26.08.2005


Predicting the magnetic behavior of metallic compounds is a surprisingly difficult problem for theoretical physicists. While the properties of a common refrigerator magnet are not a great mystery, certain materials exhibit magnetic properties that do not fit within existing theories of magnetism. One such material inspired a recent theoretical breakthrough by physicists at the University of California, Santa Cruz.



In a paper scheduled for publication in the August 26 issue of the journal Physical Review Letters, Sriram Shastry, a professor of physics at UCSC, and graduate student Jan Haerter describe "kinetic antiferromagnetism," a new mechanism for metallic magnetism in materials with a particular type of atomic lattice structure. The paper solves a problem that has stumped theoretical physicists for decades.

"New materials tend to drive theoretical advances," Shastry said. "Metallic magnetism is a real frontier field in theoretical physics, and it has practical applications in materials science."


Superconductors, magnetic storage devices (such as computer hard drives), and other applications are among the areas in which theoretical advances in metallic magnetism could play an important role.

Shastry and Haerter were interested in the unusual magnetic behavior of sodium cobalt oxide, a material first described in 1997 and intensively studied in recent years. The material can be made with variable amounts of sodium ions sandwiched between layers of cobalt oxide. The cobalt atoms form a triangular lattice structure that gives rise to "electronic frustration," which refers to the inability of the electrons in the system to achieve a single state that minimizes their total energy.

A landmark in the theoretical understanding of why certain metals are ferromagnetic--known as the Nagaoka-Thouless theorem--was achieved in the mid-1960s, but only applies to materials with an unfrustrated lattice structure. The frustrated case has remained unsolved for the past 40 years.

"This problem has been a tough nut to crack. We were able to make some progress and came up with a surprising result," Shastry said.

The magnetic properties of metals result from the configuration of the spins of electrons. Electron spin is a quantum mechanical property that can be either "up" or "down." In a ferromagnetic metal the electron spins tend to spontaneously align in the same direction. Ferromagnetism accounts for refrigerator magnets and most other magnetic behavior encountered in daily life.

In antiferromagnetism, the spins align in a regular pattern with neighboring spins pointing in opposite directions, or antiparallel. For electrons living on a triangular lattice, however, this configuration is frustrated, because two of the three electrons in each triangle must have the same spin.

"In physics, frustration is a good thing because it results in interesting properties. There are many kinds of frustrated systems in nature," Shastry said.

The kinetic antiferromagnetism in a triangular lattice described by Haerter and Shastry results from the movement of electrons when there is a single "electron hole," or unoccupied site for an electron, in the lattice. They used a theoretical model that enabled them to study the spin configuration around the electron hole, and found that the hole is surrounded by an unfrustrated hexagon in which the electron spins alternate in an antiferromagnetic pattern.

"The hole can be seen as a moving impurity around which spins tend to line up antiferromagnetically," the authors wrote in the paper.

Physicists use the concept of a moving electron hole to simplify the analysis of the motions of large numbers of electrons. The Nagaoka-Thouless theorem shows how the motion of a single hole on an unfrustrated lattice leads to ferromagnetism. Haerter and Shastry showed that the motion of a single hole on a frustrated lattice results in weak antiferromagnetism.

"It is surprising because the kinetic motion of electrons usually leads to ferromagnetism," Shastry said.

Sodium cobalt oxide is one of the first known metallic compounds with a triangular lattice structure. The density of electron holes in the lattice varies depending on the sodium content, and this has dramatic effects on the material’s magnetic behavior. Haerter and Shastry’s theory provides new insights into the physics of this unusual system.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>