Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists describe a new mechanism for metallic magnetism

26.08.2005


Predicting the magnetic behavior of metallic compounds is a surprisingly difficult problem for theoretical physicists. While the properties of a common refrigerator magnet are not a great mystery, certain materials exhibit magnetic properties that do not fit within existing theories of magnetism. One such material inspired a recent theoretical breakthrough by physicists at the University of California, Santa Cruz.



In a paper scheduled for publication in the August 26 issue of the journal Physical Review Letters, Sriram Shastry, a professor of physics at UCSC, and graduate student Jan Haerter describe "kinetic antiferromagnetism," a new mechanism for metallic magnetism in materials with a particular type of atomic lattice structure. The paper solves a problem that has stumped theoretical physicists for decades.

"New materials tend to drive theoretical advances," Shastry said. "Metallic magnetism is a real frontier field in theoretical physics, and it has practical applications in materials science."


Superconductors, magnetic storage devices (such as computer hard drives), and other applications are among the areas in which theoretical advances in metallic magnetism could play an important role.

Shastry and Haerter were interested in the unusual magnetic behavior of sodium cobalt oxide, a material first described in 1997 and intensively studied in recent years. The material can be made with variable amounts of sodium ions sandwiched between layers of cobalt oxide. The cobalt atoms form a triangular lattice structure that gives rise to "electronic frustration," which refers to the inability of the electrons in the system to achieve a single state that minimizes their total energy.

A landmark in the theoretical understanding of why certain metals are ferromagnetic--known as the Nagaoka-Thouless theorem--was achieved in the mid-1960s, but only applies to materials with an unfrustrated lattice structure. The frustrated case has remained unsolved for the past 40 years.

"This problem has been a tough nut to crack. We were able to make some progress and came up with a surprising result," Shastry said.

The magnetic properties of metals result from the configuration of the spins of electrons. Electron spin is a quantum mechanical property that can be either "up" or "down." In a ferromagnetic metal the electron spins tend to spontaneously align in the same direction. Ferromagnetism accounts for refrigerator magnets and most other magnetic behavior encountered in daily life.

In antiferromagnetism, the spins align in a regular pattern with neighboring spins pointing in opposite directions, or antiparallel. For electrons living on a triangular lattice, however, this configuration is frustrated, because two of the three electrons in each triangle must have the same spin.

"In physics, frustration is a good thing because it results in interesting properties. There are many kinds of frustrated systems in nature," Shastry said.

The kinetic antiferromagnetism in a triangular lattice described by Haerter and Shastry results from the movement of electrons when there is a single "electron hole," or unoccupied site for an electron, in the lattice. They used a theoretical model that enabled them to study the spin configuration around the electron hole, and found that the hole is surrounded by an unfrustrated hexagon in which the electron spins alternate in an antiferromagnetic pattern.

"The hole can be seen as a moving impurity around which spins tend to line up antiferromagnetically," the authors wrote in the paper.

Physicists use the concept of a moving electron hole to simplify the analysis of the motions of large numbers of electrons. The Nagaoka-Thouless theorem shows how the motion of a single hole on an unfrustrated lattice leads to ferromagnetism. Haerter and Shastry showed that the motion of a single hole on a frustrated lattice results in weak antiferromagnetism.

"It is surprising because the kinetic motion of electrons usually leads to ferromagnetism," Shastry said.

Sodium cobalt oxide is one of the first known metallic compounds with a triangular lattice structure. The density of electron holes in the lattice varies depending on the sodium content, and this has dramatic effects on the material’s magnetic behavior. Haerter and Shastry’s theory provides new insights into the physics of this unusual system.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>