Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists describe a new mechanism for metallic magnetism

26.08.2005


Predicting the magnetic behavior of metallic compounds is a surprisingly difficult problem for theoretical physicists. While the properties of a common refrigerator magnet are not a great mystery, certain materials exhibit magnetic properties that do not fit within existing theories of magnetism. One such material inspired a recent theoretical breakthrough by physicists at the University of California, Santa Cruz.



In a paper scheduled for publication in the August 26 issue of the journal Physical Review Letters, Sriram Shastry, a professor of physics at UCSC, and graduate student Jan Haerter describe "kinetic antiferromagnetism," a new mechanism for metallic magnetism in materials with a particular type of atomic lattice structure. The paper solves a problem that has stumped theoretical physicists for decades.

"New materials tend to drive theoretical advances," Shastry said. "Metallic magnetism is a real frontier field in theoretical physics, and it has practical applications in materials science."


Superconductors, magnetic storage devices (such as computer hard drives), and other applications are among the areas in which theoretical advances in metallic magnetism could play an important role.

Shastry and Haerter were interested in the unusual magnetic behavior of sodium cobalt oxide, a material first described in 1997 and intensively studied in recent years. The material can be made with variable amounts of sodium ions sandwiched between layers of cobalt oxide. The cobalt atoms form a triangular lattice structure that gives rise to "electronic frustration," which refers to the inability of the electrons in the system to achieve a single state that minimizes their total energy.

A landmark in the theoretical understanding of why certain metals are ferromagnetic--known as the Nagaoka-Thouless theorem--was achieved in the mid-1960s, but only applies to materials with an unfrustrated lattice structure. The frustrated case has remained unsolved for the past 40 years.

"This problem has been a tough nut to crack. We were able to make some progress and came up with a surprising result," Shastry said.

The magnetic properties of metals result from the configuration of the spins of electrons. Electron spin is a quantum mechanical property that can be either "up" or "down." In a ferromagnetic metal the electron spins tend to spontaneously align in the same direction. Ferromagnetism accounts for refrigerator magnets and most other magnetic behavior encountered in daily life.

In antiferromagnetism, the spins align in a regular pattern with neighboring spins pointing in opposite directions, or antiparallel. For electrons living on a triangular lattice, however, this configuration is frustrated, because two of the three electrons in each triangle must have the same spin.

"In physics, frustration is a good thing because it results in interesting properties. There are many kinds of frustrated systems in nature," Shastry said.

The kinetic antiferromagnetism in a triangular lattice described by Haerter and Shastry results from the movement of electrons when there is a single "electron hole," or unoccupied site for an electron, in the lattice. They used a theoretical model that enabled them to study the spin configuration around the electron hole, and found that the hole is surrounded by an unfrustrated hexagon in which the electron spins alternate in an antiferromagnetic pattern.

"The hole can be seen as a moving impurity around which spins tend to line up antiferromagnetically," the authors wrote in the paper.

Physicists use the concept of a moving electron hole to simplify the analysis of the motions of large numbers of electrons. The Nagaoka-Thouless theorem shows how the motion of a single hole on an unfrustrated lattice leads to ferromagnetism. Haerter and Shastry showed that the motion of a single hole on a frustrated lattice results in weak antiferromagnetism.

"It is surprising because the kinetic motion of electrons usually leads to ferromagnetism," Shastry said.

Sodium cobalt oxide is one of the first known metallic compounds with a triangular lattice structure. The density of electron holes in the lattice varies depending on the sodium content, and this has dramatic effects on the material’s magnetic behavior. Haerter and Shastry’s theory provides new insights into the physics of this unusual system.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>