Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA Physicists Find Key to Long-Lived Metal Nanowires

25.08.2005


This illustration represents a metallic quantum wire before it’s stretched to the breaking point. (Illustration: Courtesy of Charles Stafford)


University of Arizona physicists have discovered what it takes to make metal ’nanowires’ that last a long time. This is particularly important to the electronics industry, which hopes to use tiny wires -- that have diameters counted in tens of atoms -- in Lilputian electronic devices in the next 10 to 15 years.

Researchers predict that such nanotechnology will be the next Big Thing to revolutionize the computing, medical, power and other industries in coming decades.

Although researchers in Japan, the Netherlands, Spain, Brazil and the United States have had some success at making nanowires -- extremely small filaments that transport electrons -- the wires don’t last long except at low temperatures.



What researchers need are robust nanowires that will take repeated use without failing at room temperature and higher.

UA post-doctoral associate Jerome Buerki and physics Professors Charles Stafford and Daniel Stein developed a theory that explains why nanowires thin away to nothing at non-zero temperatures. Energy fluctuations in a nanowire at higher temperatures create a collective motion, or "soliton," among atoms in the wire. As each of these kink-like structures propagates from one end of the wire to the other, the wire thins.

Stafford has posted movies that show this phenomenon on his Web page, http://www.physics.arizona.edu/~stafford/necking.htmlThe movie was made by the Takayanagi group at the Tokyo Institute of Technology.

"Our theory makes one very simple prediction, which is that the energy barrier that creates these kinks depends, very simply, on the square root of the surface tension of the wire," Stafford said. "That’s quite counterintuitive, because naively you’d think that surface tension should actually make the filament unstable. But the larger the surface tension, the more stable the wire, regardless of the radius of the wire."

Creation of solitons, or kinks, in the wire depends on two competing forces - the surface tension and a quantum force that holds the wire together, Stafford explained. "It just so happens that the competition between those two forces leads to a kind of universal energy barrier which goes as the square root of the surface tension."

The discovery explains why experimentalists have had more luck at making longer-lived nanowires using such noble metals as gold and silver rather than sodium or other alkali metals. According to the UA physicists’ theory, copper is the best metal for making nanowires because it has the largest natural surface tension of the nanowire metals.

"The hardest thing with developing nanowires, I think, is how to fabricate them in a controlled way," Stafford said. "The movies show how researchers can fabricate one tiny wire, but that’s not connecting many such wires, or connecting them to make a circuit.

"But at least, our work says that these wires are very stable, and that we understand exactly how stable they are. I think that can give people confidence to move ahead with trying to do something practical with them."

The research, funded by the National Science Foundation, will be published this week in Physical Review Letters. The article, "Theory of Metastability in Simple Metal Nanowires,"appears online at http://link.aps.org/abstract/PRL/v95/390601.

Lori Stiles | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>