Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Compact JILA system stabilizes laser frequency


A compact, inexpensive method for stabilizing lasers that uses a new design to reduce sensitivity to vibration and gravity 100 times better than similar approaches has been demonstrated by scientists at JILA in Boulder, Colo. JILA is a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado at Boulder.

The method, described in the July 15 issue of Optics Letters,* stabilizes laser light to a single frequency, so that it can be used as a reliable reference oscillator for technologies such as optical clocks and light-based radar (lidar). The new stabilizer design performs better than similar systems of comparable size and is much smaller and less expensive than the best-performing systems, according to physicist John Hall, a co-author of the paper.

Laser systems are highly sensitive to environmental disturbances, such as electronic "noise" and vibration from soft drink vending machines or other equipment with mechanical motors. To stabilize operations in cases when high precision is needed, lasers are often "locked" to a single wavelength/frequency using an optical "cavity," a small glass cylinder with a mirror facing inward on each end. Laser light bounces back and forth between the mirrors and, depending on the exact distance between them, only one wavelength will "fit" that distance best and be reinforced with each reflection. Information from this stabilized laser light is then fed back to the laser source to keep the laser locked on this one frequency. But the cavity can vibrate, or expand in response to temperature changes, causing corresponding slight frequency changes. Researchers have tried various improvements such as using cavities made of low-expansion glass.

In the latest advance, the JILA team made the cavity shorter and positioned it vertically instead of horizontally, with symmetrical mounting supports so that gravity and vibration forces yield opposing distortions in the two halves, and thus balance out to zero net effect. The system was demonstrated with an infrared laser. "We designed the cavity so it doesn’t care if it’s vibrating," says Hall, who helped develop a leading resonant cavity design two decades ago. "We get good performance with a complete reduction of complexity and cost."

Laura Ost | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>