Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UK Goes Back to Mars with NASA

26.07.2005


On August 10th 2005 NASA’s Mars Reconnaissance Orbiter (MRO) will be launched from Cape Canaveral in Florida beginning its journey to the red planet. For scientists from Oxford, Cardiff and Reading it will be an intense time as it will be their third attempt to get their instrument to Mars onboard a NASA spacecraft.



The main aim of the MRO mission is to seek out the history of water on Mars. This will be accomplished by a suite of six science instruments, 3 engineering experiments and 2 science facility experiments. They will zoom in for extreme close up images of the Martian surface, analyse minerals, look for subsurface water, trace how much dust and water are distributed in the atmosphere and monitor the daily global weather.

UK scientists, from Oxford, Cardiff and Reading Universities are involved in the Mars Climate Sounder (MCS) instrument – essentially a weather satellite for Mars. It will profile the atmosphere of Mars detecting vertical variation in temperature, dust and water vapour concentration.


Professor Fred Taylor from Oxford University, who is a co-investigator on the Mars Climate Sounder, explains about why this mission means so much to his team.

“The Mars Climate Sounder is an updated version of a previous instrument (the Pressure Modulator Infrared Radiometer) that flew to Mars on NASA’s Mars Observer and Mars Climate Sounder missions in 1992 and 1999 respectively. Both of these missions were lost due to technical problems with the spacecraft, so this is a case of third time lucky, we hope!”

He adds, “The instruments are based on Earth observation instruments developed at Oxford in the 1980’s and early 1990’s with a significant amount of the hardware being built in the UK at Oxford, in collaboration with Cardiff and Reading Universities. The goal of the experiment is to measure temperature, water vapour and dust in the Martian atmosphere with high resolution and full global coverage over at least one full seasonal cycle (2 Earth years). The data will be analysed using computer models of the Martian climate, developed in a collaboration between Oxford University and Laboratoire de Meteorologie Dynamique (LMD) in Paris over the last 20 years.”

By feeding the Mars data into the model, diagnostics, and even forecasts, of the Martian climate will be able to be made – using similar methods to those used in monitoring meteorology on Earth. This information will provide a much more detailed picture of the weather systems on Mars, especially the characteristics of the dust storms, all of which will be critical research for future lander missions.

Once reaching Mars in March 2006 MRO will undergo a 6 month period of “aerobraking” which will slow the spacecraft down in the Martian atmosphere taking it into a lower circular orbit for science data collection. Whilst the science operations are scheduled for 2 years the orbiter will be used for further data communication relay activities – up until December 2010. However, there will be enough propellant onboard to remain operational for a further 5 years in Mars orbit – if required to support future missions.

The UK already has a presence at Mars with UK scientists involved in three of the seven instruments on the European Space Agency’s (ESA) Mars Express mission, which has been successfully orbiting Mars since December 2003. Since science operations began a wealth of data has been returned (including signs of a frozen sea and the detection of methane in the Martian atmosphere) along with many amazing images of Martian surface features. Data from Mars Reconnaissance Orbiter will compliment that from Mars Express – with the former as the name suggests, providing more detailed data for identifying potential future landing sites for robotic and manned missions.

Professor Keith Mason, the incoming Chief Executive of the Particle Physics and Astronomy Research Council (PPARC) said, “Mars continues to be the prime focus for the next phase of planetary exploration both in the US and Europe. Through involvement in ESA’s Aurora programme UK space scientists and industrialists will play a key role in future robotic missions including in-situ analysis of the Martian soil”. Prof. Mason added,” The scientific returns from each mission continue to increase our knowledge of the Red Planet and it’s an exciting prospect that Mars Reconnaissance Orbiter could potentially help relay data from future European missions, confirming the international collaboration of space exploration”.

Gill Ormrod | alfa
Further information:
http://www.pparc.ac.uk/Nw/mro.asp
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials
17.01.2018 | Universität des Saarlandes

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>