Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UK Goes Back to Mars with NASA


On August 10th 2005 NASA’s Mars Reconnaissance Orbiter (MRO) will be launched from Cape Canaveral in Florida beginning its journey to the red planet. For scientists from Oxford, Cardiff and Reading it will be an intense time as it will be their third attempt to get their instrument to Mars onboard a NASA spacecraft.

The main aim of the MRO mission is to seek out the history of water on Mars. This will be accomplished by a suite of six science instruments, 3 engineering experiments and 2 science facility experiments. They will zoom in for extreme close up images of the Martian surface, analyse minerals, look for subsurface water, trace how much dust and water are distributed in the atmosphere and monitor the daily global weather.

UK scientists, from Oxford, Cardiff and Reading Universities are involved in the Mars Climate Sounder (MCS) instrument – essentially a weather satellite for Mars. It will profile the atmosphere of Mars detecting vertical variation in temperature, dust and water vapour concentration.

Professor Fred Taylor from Oxford University, who is a co-investigator on the Mars Climate Sounder, explains about why this mission means so much to his team.

“The Mars Climate Sounder is an updated version of a previous instrument (the Pressure Modulator Infrared Radiometer) that flew to Mars on NASA’s Mars Observer and Mars Climate Sounder missions in 1992 and 1999 respectively. Both of these missions were lost due to technical problems with the spacecraft, so this is a case of third time lucky, we hope!”

He adds, “The instruments are based on Earth observation instruments developed at Oxford in the 1980’s and early 1990’s with a significant amount of the hardware being built in the UK at Oxford, in collaboration with Cardiff and Reading Universities. The goal of the experiment is to measure temperature, water vapour and dust in the Martian atmosphere with high resolution and full global coverage over at least one full seasonal cycle (2 Earth years). The data will be analysed using computer models of the Martian climate, developed in a collaboration between Oxford University and Laboratoire de Meteorologie Dynamique (LMD) in Paris over the last 20 years.”

By feeding the Mars data into the model, diagnostics, and even forecasts, of the Martian climate will be able to be made – using similar methods to those used in monitoring meteorology on Earth. This information will provide a much more detailed picture of the weather systems on Mars, especially the characteristics of the dust storms, all of which will be critical research for future lander missions.

Once reaching Mars in March 2006 MRO will undergo a 6 month period of “aerobraking” which will slow the spacecraft down in the Martian atmosphere taking it into a lower circular orbit for science data collection. Whilst the science operations are scheduled for 2 years the orbiter will be used for further data communication relay activities – up until December 2010. However, there will be enough propellant onboard to remain operational for a further 5 years in Mars orbit – if required to support future missions.

The UK already has a presence at Mars with UK scientists involved in three of the seven instruments on the European Space Agency’s (ESA) Mars Express mission, which has been successfully orbiting Mars since December 2003. Since science operations began a wealth of data has been returned (including signs of a frozen sea and the detection of methane in the Martian atmosphere) along with many amazing images of Martian surface features. Data from Mars Reconnaissance Orbiter will compliment that from Mars Express – with the former as the name suggests, providing more detailed data for identifying potential future landing sites for robotic and manned missions.

Professor Keith Mason, the incoming Chief Executive of the Particle Physics and Astronomy Research Council (PPARC) said, “Mars continues to be the prime focus for the next phase of planetary exploration both in the US and Europe. Through involvement in ESA’s Aurora programme UK space scientists and industrialists will play a key role in future robotic missions including in-situ analysis of the Martian soil”. Prof. Mason added,” The scientific returns from each mission continue to increase our knowledge of the Red Planet and it’s an exciting prospect that Mars Reconnaissance Orbiter could potentially help relay data from future European missions, confirming the international collaboration of space exploration”.

Gill Ormrod | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>