Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST finds rough spot in surface measurement

15.07.2005


For makers of computers, disk drives and other sophisticated technologies, a guiding principle is the smoother the surfaces of chips and other components, the better these devices and the products, themselves, will function.



So, some manufacturers might be surprised to learn that a fast and increasingly popular method for measuring surface texture can yield misleading results. As reported at recent conferences and in an upcoming issue of Applied Optics,* a team of National Institute of Standards and Technology researchers has found that roughness measurements made with white light interferometric microscopes, introduced in the early 1990s, differed by as much as 80 percent from those obtained with two other surface-profiling methods.

Interferometric microscopes are used to measure surface heights, lengths and spaces by analyzing the interference patterns created by two light beams--one reflected by a reference specimen and the other by the object of interest.


To date, the team has evaluated a total of five white light instruments from three different vendors. They compared roughness measurements of gratings with both wavelike surfaces and random surfaces.

White light interferometers were compared with "phase shifting" interferometers, which use specialized single-color light sources, and with accurate, but sometimes destructive, stylus profiling instruments that trace a sharp probe over a surface. The latter two tools were in agreement across the spectrum of test samples within the expected measurement range of the phase shift interferometers. For measurements of relatively rough surfaces, white light interferometers also yielded results that corresponded closely. But for measurements of surfaces with an average roughness between 50 and 300 nanometers, results diverged significantly, peaking at about 100 nanometers.

"The discrepancy seems to be unrelated to the specific white light instrument used or to the randomness of the surface profile," explains Ted Vorburger, head of NIST’s Surface and Microform Metrology Group.

The comparative study was carried out as part of an effort to develop international standards for three-dimensional measurements of surface texture. NIST researchers are now evaluating theoretical explanations for the observed discrepancies.

Mark Bello | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>