Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can nature deliver nanotechology’s promise?

08.07.2005


Computers, telephones, music players keep getting smaller and more powerful, but the technology making this possible can only be shrunk so far. Leeds researchers have won £2.6m to develop the ‘disruptive technology’ of the century by exploiting nature’s ability to work on the nanoscale – heralding a revolution in the way our gadgets operate.



Semiconductor chips, containing millions of transistors, are now found in everything from cars to fridges. However, the technology behind them has come a long way since the invention of the transistor in the 1940s, when they helped make radios truly portable and started a passion for music on the move. The creation of the integrated circuit allowed computers to shrink and led to the electronics revolution that we have witnessed over the last 50 years.

Nanotechnology researchers from electronic and electrical engineering, physics, chemistry, and the Astbury centre aim to combine biological molecules with electronics in a series of related projects. Ultimately, the team could replace transistors and create new, smaller, and more powerful, hybrid bio-electronic computer circuitry.


The number of transistors on a chip has increased exponentially since the 1970s, following what has been coined ‘Moore’s law’ after the predictions of Intel co-founder Gordon Moore. “But what happens when Moore’s law runs out of steam?” asks project leader Professor Giles Davies.

“If you think that a modern computer has 40-50 million transistors – maybe even 100 million – on a chip of semiconductor the size of a postage stamp, you can see how far technology has advanced,” said Professor Davies. “At best, transistors are currently 80 nanometres long.” (One nanometer is one millionth of a millimetre. A human hair is around 100,000 nanometres wide.)

“Part of the problem that we are facing is that as transistors are further miniaturised and positioned ever closer together, they start interfering with each other which affects their operation. Also, the chips become very expensive and difficult to make.”

The solution may lie with nature’s ability to manipulate strands of DNA and proteins, working on a nanoscale. Researchers have already demonstrated that certain molecules can act as electronic components – such as diodes – but the challenge is to bring these components together, in effect a new integrated circuit.

Biological materials could not only act as components themselves but could also be used to build the new chips. DNA and its famous double-helix structure forms when two compatible strands link together. This characteristic can be exploited to make sure components are assembled correctly.

“One of the most exciting aspects of the new research is to play the strengths of the biological materials and the semiconductor chips off one another. This technology will allow two-way sensing and control of signals; molecular and biological signals will be converted into electronic information, whilst electronic signals will control the activity of bio-molecules in a single programmable device,” said Professor Davies.

“For example, biological components could be used as sensors – perhaps sensing light to take a picture – and then feed the signal to the underlying microelectronics to be processed. The nanoscale nature of these parts would mean powerful computing power could be packaged in tiny devices.

“Biology may be the answer to nanotechnology’s promise and, together, could be the disruptive technology of the 21st century.”

The Research Councils UK-funded project is truly interdisciplinary and draws together researchers already working on nanotechnology across the University, including Dr Christoph Wälti and Professors Peter Stockley, Richard Bushby, Stephen Evans, and Edmund Linfield.

The basic technology award will fund seven new appointments across a range of disciplines and several technical posts. Professor Davies is looking for ‘fearless academics’ who are happy to work with colleagues who may have very different approaches to problems. They will be expected to take advantage of the project being based at a single University, meeting regularly and working in each other’s labs regardless of discipline.

Electronic and electrical engineering already has a hybrid bioelectronics lab with the equipment to generate biological materials and handle electronics. A suite of three new related labs are due for completion later this summer.

Together the researchers will become one of the world’s largest concentrations of expertise on bioelectronics with the potential to alter radically the way our gadgets work and how they’re built.

Hannah Love | alfa
Further information:
http://www.bioelectronics.leeds.ac.uk
http://reporter.leeds.ac.uk

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>