Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can nature deliver nanotechology’s promise?

08.07.2005


Computers, telephones, music players keep getting smaller and more powerful, but the technology making this possible can only be shrunk so far. Leeds researchers have won £2.6m to develop the ‘disruptive technology’ of the century by exploiting nature’s ability to work on the nanoscale – heralding a revolution in the way our gadgets operate.



Semiconductor chips, containing millions of transistors, are now found in everything from cars to fridges. However, the technology behind them has come a long way since the invention of the transistor in the 1940s, when they helped make radios truly portable and started a passion for music on the move. The creation of the integrated circuit allowed computers to shrink and led to the electronics revolution that we have witnessed over the last 50 years.

Nanotechnology researchers from electronic and electrical engineering, physics, chemistry, and the Astbury centre aim to combine biological molecules with electronics in a series of related projects. Ultimately, the team could replace transistors and create new, smaller, and more powerful, hybrid bio-electronic computer circuitry.


The number of transistors on a chip has increased exponentially since the 1970s, following what has been coined ‘Moore’s law’ after the predictions of Intel co-founder Gordon Moore. “But what happens when Moore’s law runs out of steam?” asks project leader Professor Giles Davies.

“If you think that a modern computer has 40-50 million transistors – maybe even 100 million – on a chip of semiconductor the size of a postage stamp, you can see how far technology has advanced,” said Professor Davies. “At best, transistors are currently 80 nanometres long.” (One nanometer is one millionth of a millimetre. A human hair is around 100,000 nanometres wide.)

“Part of the problem that we are facing is that as transistors are further miniaturised and positioned ever closer together, they start interfering with each other which affects their operation. Also, the chips become very expensive and difficult to make.”

The solution may lie with nature’s ability to manipulate strands of DNA and proteins, working on a nanoscale. Researchers have already demonstrated that certain molecules can act as electronic components – such as diodes – but the challenge is to bring these components together, in effect a new integrated circuit.

Biological materials could not only act as components themselves but could also be used to build the new chips. DNA and its famous double-helix structure forms when two compatible strands link together. This characteristic can be exploited to make sure components are assembled correctly.

“One of the most exciting aspects of the new research is to play the strengths of the biological materials and the semiconductor chips off one another. This technology will allow two-way sensing and control of signals; molecular and biological signals will be converted into electronic information, whilst electronic signals will control the activity of bio-molecules in a single programmable device,” said Professor Davies.

“For example, biological components could be used as sensors – perhaps sensing light to take a picture – and then feed the signal to the underlying microelectronics to be processed. The nanoscale nature of these parts would mean powerful computing power could be packaged in tiny devices.

“Biology may be the answer to nanotechnology’s promise and, together, could be the disruptive technology of the 21st century.”

The Research Councils UK-funded project is truly interdisciplinary and draws together researchers already working on nanotechnology across the University, including Dr Christoph Wälti and Professors Peter Stockley, Richard Bushby, Stephen Evans, and Edmund Linfield.

The basic technology award will fund seven new appointments across a range of disciplines and several technical posts. Professor Davies is looking for ‘fearless academics’ who are happy to work with colleagues who may have very different approaches to problems. They will be expected to take advantage of the project being based at a single University, meeting regularly and working in each other’s labs regardless of discipline.

Electronic and electrical engineering already has a hybrid bioelectronics lab with the equipment to generate biological materials and handle electronics. A suite of three new related labs are due for completion later this summer.

Together the researchers will become one of the world’s largest concentrations of expertise on bioelectronics with the potential to alter radically the way our gadgets work and how they’re built.

Hannah Love | alfa
Further information:
http://www.bioelectronics.leeds.ac.uk
http://reporter.leeds.ac.uk

More articles from Physics and Astronomy:

nachricht NUS engineers develop novel method for resolving spin texture of topological surface states using transport measurements
26.04.2018 | National University of Singapore

nachricht European particle-accelerator community publishes the first industry compendium
26.04.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>