Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can nature deliver nanotechology’s promise?

08.07.2005


Computers, telephones, music players keep getting smaller and more powerful, but the technology making this possible can only be shrunk so far. Leeds researchers have won £2.6m to develop the ‘disruptive technology’ of the century by exploiting nature’s ability to work on the nanoscale – heralding a revolution in the way our gadgets operate.



Semiconductor chips, containing millions of transistors, are now found in everything from cars to fridges. However, the technology behind them has come a long way since the invention of the transistor in the 1940s, when they helped make radios truly portable and started a passion for music on the move. The creation of the integrated circuit allowed computers to shrink and led to the electronics revolution that we have witnessed over the last 50 years.

Nanotechnology researchers from electronic and electrical engineering, physics, chemistry, and the Astbury centre aim to combine biological molecules with electronics in a series of related projects. Ultimately, the team could replace transistors and create new, smaller, and more powerful, hybrid bio-electronic computer circuitry.


The number of transistors on a chip has increased exponentially since the 1970s, following what has been coined ‘Moore’s law’ after the predictions of Intel co-founder Gordon Moore. “But what happens when Moore’s law runs out of steam?” asks project leader Professor Giles Davies.

“If you think that a modern computer has 40-50 million transistors – maybe even 100 million – on a chip of semiconductor the size of a postage stamp, you can see how far technology has advanced,” said Professor Davies. “At best, transistors are currently 80 nanometres long.” (One nanometer is one millionth of a millimetre. A human hair is around 100,000 nanometres wide.)

“Part of the problem that we are facing is that as transistors are further miniaturised and positioned ever closer together, they start interfering with each other which affects their operation. Also, the chips become very expensive and difficult to make.”

The solution may lie with nature’s ability to manipulate strands of DNA and proteins, working on a nanoscale. Researchers have already demonstrated that certain molecules can act as electronic components – such as diodes – but the challenge is to bring these components together, in effect a new integrated circuit.

Biological materials could not only act as components themselves but could also be used to build the new chips. DNA and its famous double-helix structure forms when two compatible strands link together. This characteristic can be exploited to make sure components are assembled correctly.

“One of the most exciting aspects of the new research is to play the strengths of the biological materials and the semiconductor chips off one another. This technology will allow two-way sensing and control of signals; molecular and biological signals will be converted into electronic information, whilst electronic signals will control the activity of bio-molecules in a single programmable device,” said Professor Davies.

“For example, biological components could be used as sensors – perhaps sensing light to take a picture – and then feed the signal to the underlying microelectronics to be processed. The nanoscale nature of these parts would mean powerful computing power could be packaged in tiny devices.

“Biology may be the answer to nanotechnology’s promise and, together, could be the disruptive technology of the 21st century.”

The Research Councils UK-funded project is truly interdisciplinary and draws together researchers already working on nanotechnology across the University, including Dr Christoph Wälti and Professors Peter Stockley, Richard Bushby, Stephen Evans, and Edmund Linfield.

The basic technology award will fund seven new appointments across a range of disciplines and several technical posts. Professor Davies is looking for ‘fearless academics’ who are happy to work with colleagues who may have very different approaches to problems. They will be expected to take advantage of the project being based at a single University, meeting regularly and working in each other’s labs regardless of discipline.

Electronic and electrical engineering already has a hybrid bioelectronics lab with the equipment to generate biological materials and handle electronics. A suite of three new related labs are due for completion later this summer.

Together the researchers will become one of the world’s largest concentrations of expertise on bioelectronics with the potential to alter radically the way our gadgets work and how they’re built.

Hannah Love | alfa
Further information:
http://www.bioelectronics.leeds.ac.uk
http://reporter.leeds.ac.uk

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>