Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Higher Precision Analysis Doesn’t Yield Pentaquark

07.07.2005


New, higher precision data that could only have been gathered at the Department of Energy’s Thomas Jefferson National Accelerator Facility (Jefferson Lab) shows the Theta-plus pentaquark doesn’t appear in another place it was expected. This intriguing finding contradicts evidence previously presented by Jefferson Lab researchers that they had sighted a pentaquark, a particle built of five quarks. Volker Burkert, a Jefferson Lab Experimental Hall Leader, will present this preliminary result in a talk reviewing world pentaquark data at Lepton-Photon, the XXII International Symposium on Lepton-Photon Interactions at High Energy, in Uppsala, Sweden, on Friday, July 1.


Researchers sent photons into deuterium nuclei to try to produce pentaquarks. If pentaquarks had been produced, sensitive detectors would have measured a particular mix of Kaons (K-mesons) and protons; neutrons could have been inferred from the data. The researchers did not detect this reaction. Image credit: JLab



The result comes from a very carefully crafted experiment that was designed to repeat Jefferson Lab’s original pentaquark search with a factor of ten higher statistics. Researchers in Jefferson Lab’s CEBAF Large Acceptance Spectrometer (CLAS) collaboration took data with a high-energy photon beam on a deuterium target March 13 – May 16, 2004. Deuterium is an isotope of hydrogen with one proton and one neutron in its nucleus. An earlier probe of this same region by CLAS revealed a possible signal for a pentaquark with mass 1542 MeV.

The new experiment searched for pentaquarks in this same channel at a level of precision at least 10 times higher, or one order of magnitude better, than the previous published result and found no pentaquarks. “The earlier results on the Theta-plus can not be reproduced in the analysis of the high-statistics run,” Burkert says.


Faced with this result, the collaboration re-analyzed the data from the original experiment, taking into account a new understanding of the background obtained from the recent run and improved statistical analysis software. The re-analysis revealed a much weaker signal for the pentaquark in the original experiment.

“One of the problems with the first pentaquark finding is that we didn’t completely understand the background,” Burkert says, “The statistical significance stated in the earlier result is likely due to a combination of statistical fluctuation with an underestimate of the background. We eliminated that problem with the second, higher-statistics run and a more rigorous analysis.”

The first pentaquark sighting was announced by SPring-8 researchers in the spring of 2003, and the same year, Jefferson Lab, ITEP and ELSA researchers announced that they, too, may have spotted tantalizing hints of the particle in data previously taken in other experiments. Several experiments since then have backed up these early sightings, while others have failed to confirm them. Jefferson Lab researchers are currently in the midst of several dedicated hunts for the pentaquark.

Most ordinary matter is built of quarks. They’re usually found in twos (as particles called mesons) and threes (as particles called baryons, such as protons and neutrons). While the pentaquark’s five-quark configuration is not forbidden by the theory of the strong interaction, finding one would be the first sighting of an exotic baryon.

For more information, or to schedule an interview, contact:
Kandice Carter, kcarter@jlab.org or ph. (757) 269-7263
or Linda Ware, ware@jlab.org or ph. (757) 269-7689

Thomas Jefferson National Accelerator Facility’s (Jefferson Lab’s) basic mission is to provide forefront scientific facilities, opportunities and leadership essential for discovering the fundamental structure of nuclear matter; to partner in industry to apply its advanced technology; and to serve the nation and its communities through education and public outreach. Jefferson Lab, located at 12000 Jefferson Avenue, is a Department of Energy Office of Science research facility managed by the Southeastern Universities Research Association.

Kandice Carter | EurekAlert!
Further information:
http://ww.jlab.org

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>