Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dust and gas from Comet 9P/Tempel 1 seen by ESA OGS

05.07.2005


Dust from Comet 9P/Tempel 1 seen with the ESA OGS (red filter)


Dust and gas are seen in these images of Comet 9P/Tempel 1, as observed with the 1-metre ESA Optical Ground Station (OGS) telescope, located at the Observatorio del Teide on Tenerife, Canary Islands.

Two different filters have been used in different visible light observations to study different aspects of the comet’s nature. Red ’broadband’ filters allowed the detection of dust, while blue ’narrowband’ filters, filtering only carbon gaseous compounds, allow the observations to concentrate mainly on the gas emissions of the comet.

The first set of images (above) here were taken with a broadband red filter, four days before and about 15 hours after the impact respectively. The images were exposed for 10 minutes and show the dust coma of the comet. The dust brightness has increased by 50 percent.



A strong jet has recently appeared as a direct result of the impact, pointing north-north-east. The overall coma is very asymmetric in appearance. All structures must have been created by the outburst triggered by the impact.

The second set of images of Tempel 1 from the OGS telescope use a narrowband filter (C2 emission band). They show the coma gas mixed with smaller-sized dust particles than observed in the broadband red filtered image.

The observations were taken two days before and about 16 hours after the impact respectively. Also here the coma brightness has increased by 50 percent. Again the same strong jet is visible.

In the third set of images, Tempel 1 is seen about 16 hours after the impact. The two images show the refection of blue (BC filter) and red (RC filter) light from the dust cloud surrounding the comet nucleus.

These reflections show different dust particle sizes, with blue particles being smaller than red particles. It is clear that the jet structure of the smaller dust particles points towards the north (BC image), whereas the jet composed of larger dust particles (RC image) is rotated by about 45 degrees towards the north-east.

This means that the direction in which the dust particles were ejected from the comet nucleus after impact seems to depend on the particle size.

These images introduce ESA’s OGS telescope to the network of Earth-based observatories already taking part in the one of world’s largest astronomical observation campaigns - looking at results of the 4 July comet impact event.

Rita Schulz | EurekAlert!
Further information:
http://www.esa.int/SPECIALS/Rosetta/SEMQR06DIAE_0.html

More articles from Physics and Astronomy:

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>