Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fan-like structure in Comet Tempel 1

05.07.2005


VLT First Images of Comet Tempel 1 After Impact


FORS2 images of Comet Tempel 1, before (top) and after (bottom) impact.



On the night of July 4, 2005, all ESO telescopes continued their extensive observing campaign of Comet Tempel 1. But this time, they were able to see the effect of the impact on the comet. The astronomers were clearly not disappointed.

The impact occurred at 07:52 CEST but because the comet has already set in Chile at that time, observers at the La Silla Paranal Observatory could only start observing several hours later. The first observations were done in the infrared by TMMI2 at the 3.6m telescope at La Silla, at 21:20 CEST (still daylight in Chile).


These first observations showed the comet to be 2 to 3 times brighter in the infrared than the day before the impact. The coma is also much more extended than it was until before the impact.

At sunset in Chile, all 7 telescopes of the La Silla Paranal Observatory went into operations. The FORS2 multi-mode instrument on Antu, one of the 8.2m Unit Telescope of the VLT array, took stunning images, showing that the morphology of the comet had dramatically changed: a new bright fan-like structure was now visible.

The fan lies in the southern part of the image and is rather bright and well defined. This feature is an addition to those that were already visible during the previous days, that seems to still be underlying the new one. Behind this fan, the old coma from yesterday is still present. The new structure is about 15,000 km large, indicating that the matter has been ejected with a speed of about 700 to 1,000 km/h.

Further observations during the week will study the evolution of this fan, revealing if the probe has activated a new region of the surface and how long that region remains active.

The fan is visible through the reflection of sunlight on dust grains. The fact that the big plume is not uniform in colour probably indicates that different dust size are traveling at different speeds.

Other telescopes have provided observations of the comet as well. NACO took some images of the central part of the coma, while UVES performed high-dispersion spectroscopy of the comet, in order to compare with the previous nights. First estimates indicate the emission lines to be more pronounced by 10 to 20 %.

At La Silla, the SOFI instrument at the NTT telescope, imaged the comet in the near-infared. An image in the J-band also shows the dust shell from the impact in the south-western quadrant of the coma. The very inner coma (indicated by the white box) shows on-going enhanced activity compared to the pre-impact level.

The astronomers at the La Silla Paranal Observatory will continue to observe Comet Tempel 1 for another four days in order to monitor precisely its long-term behaviour.

Henri Boffin | alfa
Further information:
http://deepimpact.eso.org/obseso8.html

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>