Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fan-like structure in Comet Tempel 1

05.07.2005


VLT First Images of Comet Tempel 1 After Impact


FORS2 images of Comet Tempel 1, before (top) and after (bottom) impact.



On the night of July 4, 2005, all ESO telescopes continued their extensive observing campaign of Comet Tempel 1. But this time, they were able to see the effect of the impact on the comet. The astronomers were clearly not disappointed.

The impact occurred at 07:52 CEST but because the comet has already set in Chile at that time, observers at the La Silla Paranal Observatory could only start observing several hours later. The first observations were done in the infrared by TMMI2 at the 3.6m telescope at La Silla, at 21:20 CEST (still daylight in Chile).


These first observations showed the comet to be 2 to 3 times brighter in the infrared than the day before the impact. The coma is also much more extended than it was until before the impact.

At sunset in Chile, all 7 telescopes of the La Silla Paranal Observatory went into operations. The FORS2 multi-mode instrument on Antu, one of the 8.2m Unit Telescope of the VLT array, took stunning images, showing that the morphology of the comet had dramatically changed: a new bright fan-like structure was now visible.

The fan lies in the southern part of the image and is rather bright and well defined. This feature is an addition to those that were already visible during the previous days, that seems to still be underlying the new one. Behind this fan, the old coma from yesterday is still present. The new structure is about 15,000 km large, indicating that the matter has been ejected with a speed of about 700 to 1,000 km/h.

Further observations during the week will study the evolution of this fan, revealing if the probe has activated a new region of the surface and how long that region remains active.

The fan is visible through the reflection of sunlight on dust grains. The fact that the big plume is not uniform in colour probably indicates that different dust size are traveling at different speeds.

Other telescopes have provided observations of the comet as well. NACO took some images of the central part of the coma, while UVES performed high-dispersion spectroscopy of the comet, in order to compare with the previous nights. First estimates indicate the emission lines to be more pronounced by 10 to 20 %.

At La Silla, the SOFI instrument at the NTT telescope, imaged the comet in the near-infared. An image in the J-band also shows the dust shell from the impact in the south-western quadrant of the coma. The very inner coma (indicated by the white box) shows on-going enhanced activity compared to the pre-impact level.

The astronomers at the La Silla Paranal Observatory will continue to observe Comet Tempel 1 for another four days in order to monitor precisely its long-term behaviour.

Henri Boffin | alfa
Further information:
http://deepimpact.eso.org/obseso8.html

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>