Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

1001 Hawaiian Nights Dedicated to the Cool and the Far Away!

24.06.2005


British astronomers today (June 24th) saw the first images from an ambitious new programme of discovery, the UKIRT Infrared Deep Sky Survey (UKIDSS). The survey will scour the sky with the world’s most powerful infrared survey camera ( WFCAM) to find some of the dimmest and most distant objects in the Universe. UKIDSS will reach at least twenty times deeper than the largest current survey conducted at this wavelength. Infrared light can be used to study objects that are not hot enough to show up in visible light, such as failed stars in our own Galaxy, as well as objects like distant quasars that are so far away that the expansion of the Universe has shifted their light into the infrared spectrum. UKIDSS will help to solve existing astronomical conundrums, such as when galaxies and quasars first lit up, and will certainly also discover new phenomena, because of the large area and depth.

WFCAM, the Wide Field Camera, was built at the UK Astronomy Technology Centre (UKATC) in Edinburgh, and is mounted on the UK Infrared Telescope (UKIRT) in Hawaii. The new images confirm the power of the camera. The strength of WFCAM comes from the large field of view, equivalent to imaging the full moon in a single exposure, made possible because the camera contains four of the largest available new-generation infrared detectors.

"WFCAM is enormously powerful. We will have surpassed the size of the current best survey after just 2 weeks, and our plan is a survey 100 times greater. It’s about exploring new territory, and we hope to discover new phenomena. In the US they have had tremendous success with the Sloan Digital Sky Survey at visible wavelengths. Now we urgently need a new detailed survey to complement Sloan beyond the visible, in the infrared." said Steve Warren, UKIDSS Survey Scientist from Imperial College.



Andy Adamson, Head of Operations for UKIRT, said "As can been seen from the images, quite extraordinary advances in technology have been made over the past 15 years and we are now poised to carry out sky surveys in the infrared with a quality matching the very best available at visible wavelengths. UKIDSS is a tremendously ambitious survey, combining unprecedented depth with an enormous area on the sky to achieve its goals. WFCAM on UKIRT is the only instrument in the world capable of meeting these challenges. Over the coming years, more than 1000 nights will be devoted to completing this huge effort."

UKIDSS consists of five separate surveys, two of which will examine regions within our own galaxy, the Milky Way. The other three surveys will encompass some of the furthest visible regions of the cosmos, to study the universe in the distant past.

Within our Galaxy, UKIDSS astronomers hope to find new neighbours for our Solar System (even closer than the nearest known star Proxima Centauri) by discovering the first example of a type of star postulated by theorists, called a ’Y dwarf’. Y dwarfs are a type of Brown Dwarf - the ’failed stars’ that are too small and cool to ignite and burn their hydrogen gas. The coolest brown dwarfs known have temperatures of 600K (over 300ºC), but theorists predict that there should be a missing link between these brown dwarfs and the cooler gas giant planets like Jupiter, which has a temperature of 150K (about -120ºC). Y dwarfs are that missing link, but because they are so cool and faint, they have never been seen before.

The surveys looking outside our Galaxy will be searching to the edge of the observable Universe, back to the earliest times after the Big Bang when the first galaxies formed. The further away we look, the further we see back in time, and the more the light is stretched (redshifted) by the expansion of the Universe, reaching the Earth at infrared wavelengths. So one has to search in the infrared to find the most distant, and earliest, objects in the Universe.

Astronomers want to understand the conditions in the Universe at the earliest times and to identify the ’epoch of reionisation’ - the time when the first galaxies and quasars began to shine, ending the Universe’s ’dark ages’. They believe that this happened about 750 million years after the Big Bang (when the Universe was 6% of its present age), but want to pinpoint the time by finding the earliest possible quasars. By studying them, the astronomers hope to refine our understanding of how galaxies formed.

The UKIDSS survey data will be used by thousands of astronomers all over Europe, and eventually all over the world. However, the hard work of designing the survey and carrying out the observations is being undertaken by a consortium of just over 100 astronomers. Andy Lawrence, the Principal Investigator for the UKIDSS consortium, from the University of Edinburgh, said "This takes Europe back into the lead in mapping the Universe. The project has been designed to achieve specific goals - for example finding the nearest stars and the most distant quasars - but it’s such a big leap I am expecting the unexpected..."

Julia Maddock | EurekAlert!
Further information:
http://www.pparc.ac.uk/Nw/UKIDSS.asp
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>