Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Leicester Team Joins NASA Jupiter Mission

09.06.2005


A University of Leicester team is involved in a newly-selected NASA mission to Jupiter due to be launched in 2010.



The mission, called Juno, will now proceed to preliminary design phase - it is the second in NASA’s New Frontiers Program.

The mission will conduct a first-time, in-depth study of the giant planet. The aim is to place a spacecraft in a polar orbit around Jupiter to investigate the existence of an ice-rock core; determine the amount of global water and ammonia present in the atmosphere; study convection and deep wind profiles in the atmosphere; investigate the origin of the Jovian magnetic field; and explore the polar magnetosphere.


Professor Stan Cowley, Professor of Solar-Planetary Physics at the University of Leicester, said: “Juno will focus on studies of the internal structure of Jupiter - through gravity and magnetic field observations - the deep atmosphere, and polar magnetosphere-ionosphere coupling and the auroras. “I was asked to become a co-investigator on this mission through the now-famous theoretical and modelling work we have done at the University of Leicester during the last five years on the electric current systems that flow between Jupiter’s upper atmosphere and the radiation belts, and their connection with Jupiter’s auroras.”

In addition to Professor Cowley, the outer planets research team working at Leicester includes Dr Emma Bunce - Lecturer in the Space Research Centre and PPARC Post-Doctoral Fellow; Dr Jon Nichols - PPARC Research Fellow; Research students Caitriona Jackman and Sarah Badman. Members of this team are also involved in the magnetic field experiment on the Cassini spacecraft, to understand the large-scale nature of Saturn’s magnetic field. "We are excited at the prospect of the new scientific understanding and discoveries by Juno in our continued exploration of the outer reaches of our solar system during the next decade," said Dr. Ghassem Asrar, deputy associate administrator for NASA’s Science Mission Directorate.

At the end of the preliminary design study, the mission must pass a confirmation review that will address significant schedule, technical and cost risks before being confirmed for the development phase. Dr. Scott Bolton of Southwest Research Institute, Boulder, Colo., is the Principal Investigator. NASA’s Jet Propulsion Laboratory, Pasadena, Calif., will provide mission project management. Lockheed Martin Space Systems in Denver will build the spacecraft.

NASA selected two proposed mission concepts for study in July 2004 from seven submitted in February 2004 in response to an agency Announcement of Opportunity. "This was a very tough decision given the exciting and innovative nature of the two missions," Asrar added. The selected New Frontiers science mission must be ready for launch no later than June 30, 2010, within a mission cost cap of $700 million.

The New Frontiers Program is designed to provide opportunities to conduct several of the medium-class missions identified as top priority objectives in the Decadal Solar System Exploration Survey, conducted by the Space Studies Board of the National Research Council.

The first NASA New Frontiers mission will fly by the Pluto-Charon system in 2014 and then target another Kuiper asteroid belt object.

Ather Mirza | alfa
Further information:
http://science.hq.nasa.gov
http://www.le.ac.uk

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>