Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Leicester Team Joins NASA Jupiter Mission

09.06.2005


A University of Leicester team is involved in a newly-selected NASA mission to Jupiter due to be launched in 2010.



The mission, called Juno, will now proceed to preliminary design phase - it is the second in NASA’s New Frontiers Program.

The mission will conduct a first-time, in-depth study of the giant planet. The aim is to place a spacecraft in a polar orbit around Jupiter to investigate the existence of an ice-rock core; determine the amount of global water and ammonia present in the atmosphere; study convection and deep wind profiles in the atmosphere; investigate the origin of the Jovian magnetic field; and explore the polar magnetosphere.


Professor Stan Cowley, Professor of Solar-Planetary Physics at the University of Leicester, said: “Juno will focus on studies of the internal structure of Jupiter - through gravity and magnetic field observations - the deep atmosphere, and polar magnetosphere-ionosphere coupling and the auroras. “I was asked to become a co-investigator on this mission through the now-famous theoretical and modelling work we have done at the University of Leicester during the last five years on the electric current systems that flow between Jupiter’s upper atmosphere and the radiation belts, and their connection with Jupiter’s auroras.”

In addition to Professor Cowley, the outer planets research team working at Leicester includes Dr Emma Bunce - Lecturer in the Space Research Centre and PPARC Post-Doctoral Fellow; Dr Jon Nichols - PPARC Research Fellow; Research students Caitriona Jackman and Sarah Badman. Members of this team are also involved in the magnetic field experiment on the Cassini spacecraft, to understand the large-scale nature of Saturn’s magnetic field. "We are excited at the prospect of the new scientific understanding and discoveries by Juno in our continued exploration of the outer reaches of our solar system during the next decade," said Dr. Ghassem Asrar, deputy associate administrator for NASA’s Science Mission Directorate.

At the end of the preliminary design study, the mission must pass a confirmation review that will address significant schedule, technical and cost risks before being confirmed for the development phase. Dr. Scott Bolton of Southwest Research Institute, Boulder, Colo., is the Principal Investigator. NASA’s Jet Propulsion Laboratory, Pasadena, Calif., will provide mission project management. Lockheed Martin Space Systems in Denver will build the spacecraft.

NASA selected two proposed mission concepts for study in July 2004 from seven submitted in February 2004 in response to an agency Announcement of Opportunity. "This was a very tough decision given the exciting and innovative nature of the two missions," Asrar added. The selected New Frontiers science mission must be ready for launch no later than June 30, 2010, within a mission cost cap of $700 million.

The New Frontiers Program is designed to provide opportunities to conduct several of the medium-class missions identified as top priority objectives in the Decadal Solar System Exploration Survey, conducted by the Space Studies Board of the National Research Council.

The first NASA New Frontiers mission will fly by the Pluto-Charon system in 2014 and then target another Kuiper asteroid belt object.

Ather Mirza | alfa
Further information:
http://science.hq.nasa.gov
http://www.le.ac.uk

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>