Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


All about Phoebe


Phoebe’s surprise

Data from the NASA/ESA/ASI Cassini-Huygens mission are providing convincing evidence that Saturn’s moon Phoebe was formed elsewhere in the Solar System, and was only later caught by the planet’s gravitational pull.

One way to unlock Phoebe’s secrets is using Cassini’s Visible and Infrared Mapping Spectrometer (VIMS), developed by a team of US (JPL), French and Italian (ASI) scientists and engineers. The science team is made by a large international group of US, Italian, French and German scientists led by the University of Arizona.

This instrument identifies the chemical compositions of the surfaces, atmospheres and rings of Saturn and its moons by measuring colours of visible light and infrared energy emitted or reflected (spectra).

The origin of Phoebe, which is the outermost large satellite of Saturn, is of particular interest because its orbit is in the opposite direction (retrograde) and inclined at a different angle to Saturn’s regular satellites (with ‘prograde’, low-inclination circular orbits).

Phoebe’s generally dark surface shows evidence of water ice, but otherwise the surface most closely resembles that of asteroids and small outer Solar System bodies such as Chiron and Pholus that are thought to have originated in the Kuiper belt.

Recent results from VIMS suggest that Phoebe was gravitationally ‘captured’ by Saturn, having formed from ice and rocks ‘accreting’, or joining together, outside the region of the ‘solar nebula’ gas and dust in which Saturn formed.

The other moons probably accreted within the nebula in which Saturn itself formed. VIMS made its observations during the close fly-by of Phoebe by Cassini-Huygens on 11 June 2004.

The composition of Phoebe should reflect the composition of the region of the solar nebula where it formed. If it originated in the region of the main asteroid belt, it should consist largely of ‘mafic’ minerals, which are silicate rocks and magmas with relatively high amounts of heavier elements.

However, the presence of highly volatile substances (i.e. lots of water and carbon dioxide ice or other carbon-based compounds) does not support strongly this hypothesis. Alternatively then, it could have formed where the Kuiper belt objects originated in the ‘volatile-rich’ outer solar nebula.

Spectra of Phoebe display a wealth of information, indicating a surface containing distinct locations iron-bearing minerals, bound water, trapped carbon dioxide, silicates, organics, nitriles and cyanide compounds. Phoebe is one of the most compositionally diverse objects yet observed in our Solar System. The only body imaged to date that is more diverse is Earth!

Mapping results from VIMS show that water ice is distributed over most of Phoebe’s observed surface, but generally shows stronger spectral signatures toward the southern polar region.

However, this water ice may only be a surface coating because some crater interiors show less ice deep in the crater and more near the surface.

By contrast with the moons around Jupiter, cratering tends to expose fresh ice in the subsurface. This raises the possibility that Phoebe is coated by material of cometary or outer Solar System origin, or that it is formed there.

Without information about its deep internal composition, we cannot conclusively say that Phoebe originated in the outer Solar System, but compositional data for the full Saturn system may help to narrow it down.

The same broad traces of iron on Phoebe are seen in Saturn’s rings, particularly in the Cassini division and the C-ring, and may imply that some materials are common to both Phoebe’s surface and the rings.

Angioletta Coradini, of the Instituto di Fisica dello Spazio Interplanetario, CNR, Rome, said: “Phoebe’s organic and cyanide compositions are unlike any surface yet observed in the inner Solar System, but organics and cyanides have still not yet been definitively detected by the VIMS in any of Saturn rings to date. This may mean that the materials on Phoebe and the rings have different origins.”

The detection of compounds with a similar absorption characteristics in their spectra on both Phoebe and Iapetus may indicate that material from Phoebe has struck Iapetus’s leading hemisphere. They may have collided or perhaps cometary material has coated both Phoebe and Iapetus.

Regardless of its origin, Phoebe’s diverse mix of materials is unique among Solar System surfaces observed to date, and the chances are very high that it probably does display primitive materials from the outer Solar System.

Jean-Pierre Lebreton | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>