Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

All about Phoebe

30.05.2005


Phoebe’s surprise


Data from the NASA/ESA/ASI Cassini-Huygens mission are providing convincing evidence that Saturn’s moon Phoebe was formed elsewhere in the Solar System, and was only later caught by the planet’s gravitational pull.

One way to unlock Phoebe’s secrets is using Cassini’s Visible and Infrared Mapping Spectrometer (VIMS), developed by a team of US (JPL), French and Italian (ASI) scientists and engineers. The science team is made by a large international group of US, Italian, French and German scientists led by the University of Arizona.

This instrument identifies the chemical compositions of the surfaces, atmospheres and rings of Saturn and its moons by measuring colours of visible light and infrared energy emitted or reflected (spectra).



The origin of Phoebe, which is the outermost large satellite of Saturn, is of particular interest because its orbit is in the opposite direction (retrograde) and inclined at a different angle to Saturn’s regular satellites (with ‘prograde’, low-inclination circular orbits).

Phoebe’s generally dark surface shows evidence of water ice, but otherwise the surface most closely resembles that of asteroids and small outer Solar System bodies such as Chiron and Pholus that are thought to have originated in the Kuiper belt.

Recent results from VIMS suggest that Phoebe was gravitationally ‘captured’ by Saturn, having formed from ice and rocks ‘accreting’, or joining together, outside the region of the ‘solar nebula’ gas and dust in which Saturn formed.

The other moons probably accreted within the nebula in which Saturn itself formed. VIMS made its observations during the close fly-by of Phoebe by Cassini-Huygens on 11 June 2004.

The composition of Phoebe should reflect the composition of the region of the solar nebula where it formed. If it originated in the region of the main asteroid belt, it should consist largely of ‘mafic’ minerals, which are silicate rocks and magmas with relatively high amounts of heavier elements.

However, the presence of highly volatile substances (i.e. lots of water and carbon dioxide ice or other carbon-based compounds) does not support strongly this hypothesis. Alternatively then, it could have formed where the Kuiper belt objects originated in the ‘volatile-rich’ outer solar nebula.

Spectra of Phoebe display a wealth of information, indicating a surface containing distinct locations iron-bearing minerals, bound water, trapped carbon dioxide, silicates, organics, nitriles and cyanide compounds. Phoebe is one of the most compositionally diverse objects yet observed in our Solar System. The only body imaged to date that is more diverse is Earth!

Mapping results from VIMS show that water ice is distributed over most of Phoebe’s observed surface, but generally shows stronger spectral signatures toward the southern polar region.

However, this water ice may only be a surface coating because some crater interiors show less ice deep in the crater and more near the surface.

By contrast with the moons around Jupiter, cratering tends to expose fresh ice in the subsurface. This raises the possibility that Phoebe is coated by material of cometary or outer Solar System origin, or that it is formed there.

Without information about its deep internal composition, we cannot conclusively say that Phoebe originated in the outer Solar System, but compositional data for the full Saturn system may help to narrow it down.

The same broad traces of iron on Phoebe are seen in Saturn’s rings, particularly in the Cassini division and the C-ring, and may imply that some materials are common to both Phoebe’s surface and the rings.

Angioletta Coradini, of the Instituto di Fisica dello Spazio Interplanetario, CNR, Rome, said: “Phoebe’s organic and cyanide compositions are unlike any surface yet observed in the inner Solar System, but organics and cyanides have still not yet been definitively detected by the VIMS in any of Saturn rings to date. This may mean that the materials on Phoebe and the rings have different origins.”

The detection of compounds with a similar absorption characteristics in their spectra on both Phoebe and Iapetus may indicate that material from Phoebe has struck Iapetus’s leading hemisphere. They may have collided or perhaps cometary material has coated both Phoebe and Iapetus.

Regardless of its origin, Phoebe’s diverse mix of materials is unique among Solar System surfaces observed to date, and the chances are very high that it probably does display primitive materials from the outer Solar System.

Jean-Pierre Lebreton | alfa
Further information:
http://www.esa.int/SPECIALS/Cassini-Huygens/SEM9K40DU8E_0.html

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>