Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s first UV ’ruler’ sizes up atomic world

20.05.2005


The world’s most accurate "ruler" made with extreme ultraviolet light has been built and demonstrated with ultrafast laser pulses by scientists at JILA, a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado at Boulder.


The new JILA ultraviolet "ruler" is made by exposing xenon gas atoms to a special type of infrared laser light called a femtosecond frequency "comb."



The new device, which consistently generates pulses of light lasting just femtoseconds (quadrillionths of a second, or millionths of a billionth of a second) in the ultraviolet region of the electromagnetic spectrum, will be described in the May 20 issue of Physical Review Letters.*

The device is expected to become an important tool for ultraprecise measurements in many fields of science, including chemistry, physics and astronomy. A ruler made with shorter wavelengths of light makes it possible to "see" more precise differences than ever before in the energy levels of light emissions that identify specific atoms, in the timing of chemical reactions, or, if additional applications are developed, in the dimensions of certain nanometer-scale objects. The new device also can be compared to a camera with ultrafast shutter speeds and consistent shot-to-shot frame speed and stability, allowing scientists to take real-time "pictures" of finer structures and dynamics. By combining many such pictures at a high speed, scientists can gain a more detailed understanding of many phenomena.


"This ultraviolet light source has a spectacularly high resolution," says Jun Ye, a NIST Fellow who leads the JILA research group. "On the technological side, the system we used to produce this light is simple and low cost, without active amplifiers."

The new laser device generates a "frequency comb," so-called because the frequency spectrum--a graphical representation of the pattern made by many successive laser pulses building on each other--looks like the evenly spaced teeth of a hair comb. (See graphic.) The new comb is a short-wavelength version of the optical frequency combs that in recent years have enabled demonstrations of optical atomic clocks, which are expected to be as much as 100 times more accurate than today’s microwave-based atomic clocks. A femtosecond comb, because of its high speed (or repetition rate), has the finest teeth of any optical ruler.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>