Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s first UV ’ruler’ sizes up atomic world

20.05.2005


The world’s most accurate "ruler" made with extreme ultraviolet light has been built and demonstrated with ultrafast laser pulses by scientists at JILA, a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado at Boulder.


The new JILA ultraviolet "ruler" is made by exposing xenon gas atoms to a special type of infrared laser light called a femtosecond frequency "comb."



The new device, which consistently generates pulses of light lasting just femtoseconds (quadrillionths of a second, or millionths of a billionth of a second) in the ultraviolet region of the electromagnetic spectrum, will be described in the May 20 issue of Physical Review Letters.*

The device is expected to become an important tool for ultraprecise measurements in many fields of science, including chemistry, physics and astronomy. A ruler made with shorter wavelengths of light makes it possible to "see" more precise differences than ever before in the energy levels of light emissions that identify specific atoms, in the timing of chemical reactions, or, if additional applications are developed, in the dimensions of certain nanometer-scale objects. The new device also can be compared to a camera with ultrafast shutter speeds and consistent shot-to-shot frame speed and stability, allowing scientists to take real-time "pictures" of finer structures and dynamics. By combining many such pictures at a high speed, scientists can gain a more detailed understanding of many phenomena.


"This ultraviolet light source has a spectacularly high resolution," says Jun Ye, a NIST Fellow who leads the JILA research group. "On the technological side, the system we used to produce this light is simple and low cost, without active amplifiers."

The new laser device generates a "frequency comb," so-called because the frequency spectrum--a graphical representation of the pattern made by many successive laser pulses building on each other--looks like the evenly spaced teeth of a hair comb. (See graphic.) The new comb is a short-wavelength version of the optical frequency combs that in recent years have enabled demonstrations of optical atomic clocks, which are expected to be as much as 100 times more accurate than today’s microwave-based atomic clocks. A femtosecond comb, because of its high speed (or repetition rate), has the finest teeth of any optical ruler.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>